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Abstract:
In the post-pandemic era, marked by economic uncertainty and stock market volatility, investors are turning to Modern 
Portfolio Theory (MPT) to guide their investment decisions. This study aims to develop a robust mathematical 
framework for portfolio construction using the Markowitz Model (MM) and the Index Model (IM) with added 
constraints. The objectives are threefold: (1) to create a portfolio framework that reflects investor preferences using MM 
and IM with additional constraints, (2) to compare these models against the Gaussian Distribution using Python and 
Excel, (3) to compare the statistical data and correlation tests of daily logarithmic returns in Python with monthly excess 
returns in Excel, and (4) to evaluate their performance relative to the traditional Markowitz approach through Monte 
Carlo simulations.
The methodology involves incorporating five additional constraints into the MM and IM models. The analysis uses 20 
years of historical daily return data for ten stocks from various sectors, one equity index (S&P 500) as a risk-free rate 
proxy (1-month Fed Funds rate). Daily logarithmic returns are analyzed using Python, while Excel Solver and Solver 
Table are employed for monthly excess return data.
Keywords: Markowitz Model, Index Model, Constraints, Python, Monte Carlo Simulation

1. Introduction
In the period of the post-pandemic era, with the capricious 
economic situation, the investors consider how to apply 
the Modern Portfolio Theory (MPT), a pragmatic ap-
proach to portfolio selection that aims to maximize overall 
returns within an acceptable level of risk, in the unprece-
dented volatility on the stock market. This study is based 
on the Markowitz Model (“MM”) and the Index Model 
(“IM”) with extending five various additional constraints 
on portfolio selection.
The main idea of this study is (1) to find the mathematical 
framework to build an investment portfolio t with consid-
ering the investor’s preference by implementing the ideas 
of the Markowitz Model (“MM”) and the Index Model 
(“IM”) with adding five various additional constraints as-
sumptions, and (2) to give the results of the comparation 
with Markowitz by supervising a Monte Carlo simulation.
The project is designed by using a recent 20 years of his-
torical daily total return data for ten stocks, which belong 
in groups to three-four different sectors (according to 
Yahoo!finance), one (S&P 500) equity index (a total of 

eleven risky assets) and a proxy for risk-free rate (1-month 
Fed Funds rate). To reduce the non-Gaussian effects, the 
project aggregates the daily data to the monthly obser-
vations, and based on those monthly observations, with 
calculating all proper optimization inputs for the full Mar-
kowitz Model (“MM”), alongside the Index Model (“IM”). 
Using these optimization inputs for MM and IM, the proj-
ects find the regions of permissible portfolios (efficient 
frontier, minimal risk portfolio, optimal portfolio, and 
minimal return portfolios frontier) for the following five 
cases of the additional constraints. The project presents 
the results in both the tabular and graphical form with the 
objective to make inferences and comparisons between 
the sets of constraints for each optimization problem and 
between the MM and IM models in general. Notably, the 
explanations of the observations making the connections 
to theory is given to predict possible outcomes by con-
ducting a Monte Carlo simulation.
The list of five cases of the additional constraints:
1. This additional optimization constraint is designed to 
simulate the Regulation T by FINRA (https://www.finra.
org/rules-guidance/key-topics/margin-accounts), which al-
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lows broker-dealers to allow their customers to have posi-
tions, 50% or more of which are funded by the customer’s 
account equity:

	
2. This additional optimization constraint is designed to 
simulate some arbitrary “box” constraints on weights, 
which may be provided by the client:

	
3. A “free” problem, without any additional optimization 
constraints, to illustrate how the area of permissible port-
folios in general and the efficient frontier in particular 
look like if you have no constraints;
4. This additional optimization constraint is designed to 
simulate the typical limitations existing in the U.S. mu-
tual fund industry: a U.S. open-ended mutual fund is not 
allowed to have any short positions, for details see the 
Investment Company Act of 1940, Section 12(a)(3)
(https://www.law.cornell.edu/uscode/text/15/80a-12):

	
5. Lastly, we would like to see if the inclusion of the broad 
index into our portfolio has positive or negative effect, for 
that we would like to consider an additional optimization 

constraint:

	

2 Theoretical Model
2.1 Markowitz Model
Markowitz Model, so-called Markowitz Portfolio Op-
timization Model, is a process of security selection that 
maximizes overall returns within an acceptable level of 
risk, proposed by Nobel laureate Harry Markowitz in 
1952. The basic of MM is the Markowitz efficient set, also 
known as the efficient frontier, is a fundamental part of 
modern portfolio theory (MPT). According to Harry Mar-
kowitz, “Portfolio Selection” (Markowitz, 1952), Journal 
of Finance, March 1952, briefly, the approach to the case 
of many risky assets and a risk-free asset*.
2.1.1 The process of Markowitz Optimization

The mathematical approach has three parts:
1. Determine the “opportunity set” (minimal variance 
frontier): allowed risk-return combinations. Minimal vari-
ance frontier is a graph of the lowest possible variance 
that can be attained for a given portfolio expected return.

The Minimum-Variance Frontier of Risky Assets
All individual assets are located to the right of the mini-
mum variance frontier, i.e., portfolios consisting of single 
assets are sub-efficient. The portion of the minimum-vari-
ance frontier that is above the Global Minimum-Variance 
portfolio is called the efficient frontier of risky assets: they 
offer the best risk-return combination.
2. Identify the optimal risky portfolio as the steepest 

Capital Allocation Line (CAL), is the description of all 
the available risk-return combinations, tangential to the 
opportunity set. The slope of CAL is reward-to-vol-
atility ratio, so-called the Sharpe ratio after William 
Sharpe, who first used it extensively.  Suppose, in-
vestor decided on the composition of risky portfolio, 
P (with expected return E(rP) and standard deviation 
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σP) and he wants to know the appropriate proportion 
y. The remaining part (1-y) will be allocated into risk-
free portfolio F. Then, the rate of return of the com-

p l e t e  p o r t f o l i o  C  i s :   

The function of CAL:

	

We look for the capital allocation line with the highest 
return-to-volatility (Sharpe) ratio (i.e., the steepest slope) 

. The leveraged portfolio has a relatively 

high expected return and standard deviation, but the return 

to volatility (Sharpe) ratio is the same . 

Then the leveraged portfolio has a lower reward-to-vola-
tility (Sharpe) ratio. Investors face a kink in the capital al-
location line when their borrowing capacity is exhausted, 
leading to the borrowing rate surpassing the lending rate.  
This point marks a restriction where an investor can no 
longer leverage additional funds at the risk-free rate.

The investment opportunity set with different borrowing and lending rates
The optimal risky portfolio P corresponds to tangent CAL 
on the efficient frontier. Such CAL dominates all other 
feasible lines.
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The efficient frontier of risky assets with the optimal CAL
3. Choose the appropriate complete portfolio by mixing 
with the risk-free asset given risk-aversion.
This part is investor- (risk-aversion-)dependent. Given 
risk-aversion parameter A, on the whole (CAL) we now 
need to choose one optimal risky portfolio allocation y. 
We construct the optimal risky portfolio P. Now, given the 
investor’s risk aversion, we can calculate the fraction of 
the complete portfolio invested in the risky and risk-free 
components (T-Bills). Calculate the shares of complete 
portfolio invested into each asset and in T-Bills. Optimal 
ratio to be invested in risky asset for an investor with risk 
aversion coefficient A:

	

The process of the function of risk aversion coefficient:

	
U(r) is utility function.
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Determination of the optimal complete portfolio
Although the above process seems complete, it requires: a 
set of estimates of the expected returns of each risky asset 
and a set of estimates of their covariance matrix. Some 
combinatorics related to these estimates: The number of 

estimates of returns  is n; The number of 

non-repeated elements in the covariance matrix:

which is a sum of arithmetic progression, which is com-
posed of : diagonal terms, individual assets squared stan-

dard deviations, and off - diagonal terms, cross - 

covariances.   Thus, the total number of estimates needed 

is: , which for a 50 - asset portfolio is equal to 

1,325!
There is the extension of diversification: Power of Diver-
sification:
The basic covariance- related formulas: 

Consider now a simplified case of equally-weight-

e d  p o r t f o l i o ,  t h a t  i s  w h e n   

Introduce the notions of average variance and average co-
variance:

Then we can re -write the portfolio variance as :
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Conclusion:
when all the risk is firm- specific, portfolio variance can 
be driven to zero! For , we have  
which is a function of systematic factors in economy.

Assume ,  f u r t he r  t ha t  f o r   and  fo r 

 Then: 

We then have for   

portfolio variance approaches zero for large ; for  

portfolio variance is  independently of ; for any  

portfolio variance approaches  for large .

There are two factors affects one stock (“Portfolios”): 
macro-economic factors (conditions of general economy, 
business cycle, inflation, interest rates, exchange rates, 
etc.) and firm-specific influences (advance in research and 
development, personnel changes, etc.). Although we can’t 
change the economic environment (systematic risk), the 
unsystematic risk can be degraded. The Naïve diversifi-
cation, simply including additional securities into such a 
portfolio, can reduce portfolio risk by reducing
firm-specific influences.

Only considered equally weighted portfolios achieve 
naïve diversification, efficient diversification is optimal 
risky portfolios, i.e. having minimal possible risk for any 
given level of expected return.
Some notations and formulas of Portfolio of two risky are 
listed:
The Portfolio of two risky assets: a bond fund (long-term 

debt) D, and a stock fund, E.
Descriptive statistics: Expected Return, E(r);Standard De-
viation, σ;Covariance, Cov(rD,rE);Correlation Coefficient, 
ρDE

- a proportion which is invested into the bond fund;

- is invested into the stocks fund.
Rate of return of such portfolio :

The expected return of such portfolio :

The variance :

Using the definition of correlation coefficient :

we get for the portfolio variance:

Case of perfect positive correlation 

Case of perfect negative correlation 

The opportunity set of the debt and equity 
funds with the optimal CAL and the optimal 

risky portfolio
The lowest value of portfolio variance is zero, when ρ=-1, 
and solution for weights is:
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How to decide the weights of the debt and equity. The 
evolution of weights’ solution is presented as following. 
First, there are some effects of varying the stocks weight 
on Portfolio Standard Deviation
• For any ρ<1, as the portfolio weight in the equities 
grows from 0 to 1, portfolio risk first falls, then achieves 
its lowest (optimal) point, but then rises again as the port-

folio becomes heavily concentrated in equities.
• Only for ρ=1 portfolio standard deviation monotonically 
grows from low risk to high risk asset.
• For any ρ<1 the minimal variance portfolio has a stan-
dard deviation smaller than that of either of the individual 
components.

Portfolio expected returns as a function of standard deviation
Second, the illustration of the exact analytic solution of 
weights calculation.
Introduce easier notations: D 1, E  2, f0,
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2.2 Index Model
The Index Model is introduced because of some draw-
backs of the Markowitz Procedure. First, the model 
requires a large number of estimates to populate the cova-
riance matrix. Second, it does not provide any guidelines 
for finding useful estimates of these covariances or risk 
premiums, which are essential for constructing an efficient 
frontier for risky assets. Because past returns are noisy 
guides to expected future returns, this shortcoming is ob-
vious.
The index model was first indicated by Willam Sharpe. 
According to Sharpe analysis, “This paper describes the 
advantages of using a particular model of the relationships 
among securities for practical applications of the Mar-
kowitz portfolio analysis technique. A computer program 
has been developed to take full advantage of the model: 
2,000 securities can be analyzed at an extremely low cost-
as little as 2% of that associated with standard quadratic 
programming codes. Moreover, preliminary evidence 
suggests that the relatively few parameters used by the 
model can lead to very nearly the same results obtained 
with much larger sets of relationships among securities.     
The possibility of low-cost analysis, coupled with a like-
lihood that a relatively small amount of information need 
be sacrificed make the model an attractive candidate for 
initial practical applications of the Markowitz technique.” 
(Sharpe, 1963) Thus, Sharpe suggested that the extension 
of Markowitz’s work on portfolio analysis. Index model is 
to solve the problem of Markowitz’s technique. The Index 
Model of the relationships between securities, points out 
the ways in which it allows the portfolio analysis problem 
to be simplified, and provides evidence on the costs and 
desirability of using this model for practical applications 
of Markowitz’s technique.
2.2.1 The process of Index Model

Decompose security returns into: 

where the unexpected return has zero mean :  

and a standard deviation of The uncertainty is firm- 
specific :

Further, assume that are normally- distributed.
Next, assume that there is a common, stock-independent 
“macroeconomic” random factor m that affects all stocks 
equally: , such that m is also 

normally- distributed, its’ standard deviation is  and 

.

.

Then: .
Finally, we need to consider that some companies are 
more dependent on macroeconomic factors and some are 
less dependent on them:

The risk and covariance are determined by the stock’s beta 
coefficient:

.
It is most convenient to choose a broad index (S&P 500) 
as a broad macroeconomic factor. It has a considerable 
amount of past data available for estimation. If denotes m 
market index, then, its excess return is

and standard deviation . The factor  can be esti-
mated using linear regression between observations of 

 and :

.
If we take the expected value of both sides, we get :

,

where the first term, ,is non -market risk - premium. 
(Sharpe)
Risk and covariance
Total risk = Systematic risk + Firm-Specific risk

;
Covariance = Product of betas * Market index risk

Correlation = Product of correlations with the market in-
dex

All of these are determined by the security’s beta and the 
properties of the market index.
To further assume, for simplicity, an equally - weighted 

portfolio :

from which follows:

and .

The firm - specific risk is diversifiable:

.

The index model is a very useful abstraction: it reduces 
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the number of estimates required from O(n2) to O(n). 
This is crucial for the specialization of security analysis 
work: analysts can specialize by industry. The covariance 
between securities is due to a single common factor, the 
effect of the market index. The price of the index model’s 
simplification is the restrictions it places on the statistics 
of asset returns. The assumption that asset returns can be 
perfectly decomposed into macro and micro components 
is an oversimplification of the real world. For example, 
this will ignore industry-specific events that do not affect 
the macro environment. If stocks with correlated residuals 
have high alpha, then the index model can lead to a worse 
portfolio than the full Markowitz model. For example: if 
the excess returns of BP (British Petroleum) and RDS/A 
(Royal Dutch Shell) are correlated, the index model will 
ignore this. The Markowitz model will take this correla-
tion into account. The two models lead to completely dif-
ferent portfolios for a small number of instruments. If the 
residual return correlation of two stocks is positive, the 

Markowitz model will give both stocks a smaller weight; 
if it is negative, the index model will underweight both 
stocks, resulting in higher than Markowitz variance.

3 Research Design
According to the theory, I design the test with 10 stocks. 
First, this test lists the historical daily total return data of 
10 stocks in 3-4 different industries for nearly 20 years 
(according to Yahoo Finance), the S&P 500 stock index 
(which contains a total of 11 risky assets), and a proxy for 
the risk-free rate (the 1-month federal funds rate). Second, 
to test 10 stocks through IM and MM calculations as well 
as diminishing the non-Gaussian effects, the data are dealt 
with Excel and Python. Finally, the results are conducted 
a Monte Carlo simulation and scenario analysis.
3.1 Stock Description and Analysis
The chat illustrates the raw data of 10 stocks, the S&P 500 
stock index and a proxy for the risk-free rate (the 1-month 
federal funds rate) from Bloomberg.

Stock Code Stock 
Name Sector Equity Description

Technology ADBE Adobe Inc.
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IBM

International 
Business 
Machines 

Corporation

SAP SAP SE

Financial 
Services BAC

Bank of 
America 

Corporation
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C Citigroup Inc.

WFC Wells Fargo 
Company

TRV
The Travelers 
Companies, 

Inc.
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Industrials

LUV Southwest 
Airlines Co.

ALK Alaska Air 
Group, Inc.

HA Hawaiian 
Holdings, Inc.
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Index SPX S&P 500 
Index

4 Data Test in Python and Excel
The test part is separated into two parts: using daily log-
arithm returns in Python and calculating monthly excess 
returns in Excel. Using monthly data is conventional but 
I observe daily data of stocks in Python to compare with 
using monthly data excess return in Excel. First, I test the 
simple return and logarithm return on every 10 stocks and 
the raw data of 10 stocks, the S&P 500 stock index and 
a proxy for the risk-free rate (the 1-month federal funds 
rate) from 2001 to 2021 by Python. It is important to be 
consistent in the way we calculate returns. If we choose 
to calculate simple returns, we must do so for all further 
financial calculations. Similarly, if we decide to calculate 
log returns, we should only use log returns. There is no 
universal rule for the method we should use, but most 
econometricians agree that simple returns are preferable 
when you must deal with multiple assets over the same 
time period, and logarithm returns are preferable when 
you calculate a single asset over a period of time. Thus, 
we compare the simple return for each asset with the loga-
rithm return.
The formula of simple return:

= −

      End Price Beginning Price

   Beginning Price
   End Price

   Beginning Price
−

1

The formula of logarithm return:

ln 
 
    Beginning Price

   End Price

4.1 Data Test in Python and Excel
ADBE:

There are 5031 returns, excluding holidays, for each of the 
companies. A small difference is between simple returns 
and log returns. I will use logarithm returns throughout all 
testing. In addition, the daily return output is a very small 
number, much smaller than 1%, which makes it difficult 
to interpret. I calculate a close approximation of the aver-
age annual rate of return by multiplying the average daily 
return by 250. The number of trading days actually ranges 
from 250 to 252 because it excludes non-trading days, 
such as Saturdays, Sundays, and bank holidays. This val-
ue will be easier to understand than the previous one. The 
statistical information of daily data is as follows:
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The stock’s variance formula: s2 =
Σ −( )

n
x x
−1

2

The stock’s standard deviation formula: s s= 2

Sample skewness formula: 

Sample excess kurtosis (KE):
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Statistics in 10 stocks and S&P500 in Python
As is the statistics information of each stock shown 
above, the highest annual mean logarithm return is ADBE, 
15.8663. which is in the technology sector. The securities 

of 10 stocks in the technology sector and industries sector 
have higher annual mean logarithm returns than the se-
curities in the finance sector. The annual mean logarithm 
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return of Citigroup Inc. is -9.3635. If skewness is positive, 
the average magnitude of positive deviations is larger than 
the average magnitude of negative deviations. Other than 
that, the skewness of Wells Fargo Company is 0.7072, 
and the rest stocks’ skewness is negative. It means that the 
mean logarithm return of securities is less than the median 
and mode of securities. The average magnitude of nega-
tive deviation is larger than the average magnitude of pos-
itive deviations. The most securities with negative skew-
ness have the most extreme values and are found further 
to the left. In addition, the kurtosis of a normal distribu-
tion is 3.0, so a fat-tailed distribution has a kurtosis above 
3 and a thin-tailed distribution has a kurtosis below 3.0. 
A return distribution with positive excess kurtosis, or fat-
tailed return distribution, has extremely large deviations 
from the mean more frequently than a normal distribution. 
Most stock return series have been found to have fat tails, 
with a high probability of very bad or very good results. 
Although 10 stocks all have fat tails, the kurtosis above 
3, the highest kurtosis of Hawaiian Holdings, Inc (HA) is 
138.6983. Thus, Hawaiian Holdings, Inc. is easy to appear 
a high probability of very bad or very good results. The 
annual standard deviation of Hawaiian Holdings, Inc. is 
0.6779, the highest of 10 stocks.

4.2 Comparison with Gaussian distribution
The test has used empirical data to compare to the Gauss-
ian distribution, which is so-called the Normal distribu-
tion, a “bell-shaped” curve. It is a probability distribution 
that is symmetric about its mean, meaning that values 
close to the mean occur more frequently than values far 
from the mean.
The Gaussian probability density function:

Here x is a random variable, which is a price change 
in our case, and and are parameters, 

for which, as you can check the following equalities are 
true:

whereby , I have denoted 

averaging over a PDF.
I chose to histogram an empirically given to random vari-
able y (for example, using an
Histogram tool in Python). For that I need to select an 
equidistant range of bins, separated with step Δ. Then the 
PDF value obtained from the numerical histogram mea-
surements can be calculated as follows:

where i is the bin number, N i is the count of values in 

bin i, and , where M is the number of bins. This 

empirical PDF needs to be calculated as a function of 

, as the center of bin having x i as its larger end-

point.
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Daily logarithm return compared to the Gaussian in Python
The logarithmic return of securities are dark blue histo- gram. The purple histogram is described as an abnormal 
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distribution. I set 20 bins in the histogram and the range 
is (-4,4) (Figure). The line is followed by a normal distri-
bution. From the figure, the stocks aren’t suitable for the 
normal distribution. The highest frequency of stocks oc-

curs in the center of the distribution.
Here is the Daily Data compared to the Gaussian and 
Monthly Data compared to the Gaussian in Excel.

Daily Data compared to the Gaussian in Excel 

Monthly Data compared to the Gaussian in Excel
Monthly data is more suitable for the Gaussian function 
than daily data. Therefore, using monthly data as an anal-
ysis tool in the future is a good choice.

4.3 Illustration of Systematic risk
I calculate the daily logarithmic yield of a security to 
show the plots of each security and compare them the 
Market Index (S&P 500). The corresponding graph of the 
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daily logarithmic yield of securities is listed below:
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The daily logarithmic yield of securities in 
Python

According to the graphs above, I observe that the SPX 
experienced significant fluctuations in certain years, such 
as 2008 and 2020. Building on this point, I examined the 
companies (SAP, BAC, C, WFC, TRV, LUV, ALK) that 
are influenced by market risk, also known as systematic 
risk. The macroeconomic factors include conditions of 
the general economy, the business cycle, inflation, interest 
rates, exchange rates, and so on. The financial crisis of 
2008 and the COVID-19 pandemic of 2020 led to a sig-
nificant wave of understanding in the market during that 
time.

4.4 Correlation Test
After testing individual stocks’ statistics, first, I check the 
correlation of the 10 stocks and one risk-free rate’s daily 
logarithm return. The numbers 0-10 correspond to these 
stocks in order:[‘ADBE’,’IBM’,’SAP’,’BAC’,’C’,’WFC’,
’TRV’,’LUV’,’ALK’,’ HA’,’SPX’]
The heat map of the correlation test by daily logarithm 
return:

Correlations in Python
The heat map of the covariances test
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Covariances in Python
All correlations and covariances are positive. It illustrates 
that 10 stocks move in the same direction. It’s hard to off-

set relative risk.

 

Statistics of completed portfolio in Python
Second, I use the monthly excess return to calculate the 
correlation and some statistics. Excess Return = simple 
return – average return.

The raw data is total return which means the price is ad-
justed by dividends.

Correlations in Excel

Statistics of completed portfolio in Excel
4.5 Markowitz Model with Constraints

1) Constraint 1

The so-called constraints are the weight restrictions. Con-

straint 1 is that the absolute value of the sum of the stock’s 
weights is less than or equal to 2. This additional opti-
mization constraint is intended to permit broker-dealers 
to allow their customers to hold positions where 50% or 
more of the position is funded by the customer’s account 
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334

equity:

Figure 1
Figure 1 above states that the stocks’ weights in consid-
eration of constraint 1. There are two considerations: 
Minimum Variance (MinVar) and Maximum Sharpe 
(MaxSharpe). In MinVar condition, the minimum standard 
deviation is 11.75% with a return of 6.72%. The Sharpe 
ratio is 0.572. The lowest risk is the red point on the MM 
efficient Frontier in Figure 1. In MaxSharpe condition, the 
maximum Sharpe ratio is 0.994 with a return of 17.59% 
and standard a deviation of 17.7%. In Figure 1, the highest 

Sharpe ratio is the blue point passing the capital allocation 
line (MM CAL Constr1).
2) Constraint 2

Constraint 2 is that the absolute value of the sum of the 
stock’s weights is less than or equal to 1. This additional 
optimization constraint is designed to simulate some arbi-
trary “box” constraints on weights, which may be provid-
ed by the client: 

Figure 2
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In MinVar condition, the minimum standard deviation is 
11.79% with a return of 6.97%.
The Sharpe ratio is 0.591. The lowest risk is the red point 
on the MM efficient Frontier in Figure 2. In MaxSharpe 
condition, the maximum Sharpe ratio is 1.035 with a re-
turn of 22.07% and a standard deviation of 21.33%. In 
Figure 1, the highest Sharpe ratio is the blue point.

3) Constraint 3

The constraint 3 is the Markowitz Model because it has 
no constraints, which solves a “free” problem, to illustrate 
how the area of permissible portfolios in general and the 
efficient frontier in particular.

 

Figure 3
In MinVar condition, the minimum standard deviation is 
11.75% with a return of 6.69%.
The Sharpe ratio is 0.57. The lowest risk is the red point 
on the MM efficient Frontier in Figure 3. In MaxSharpe 
condition, the maximum Sharpe ratio is 1.035 with a re-
turn of 22.07% and a standard deviation of 21.33%. In 
Figure 3, the highest Sharpe ratio is the blue point. The 
results MaxSharpe in Constraint 3 are the same as in Con-
straint 2.

4.6 Index Model with Constraints
The Index Model with constraints is different from the 

MM with constraints in three constraints.
1) Constraint 1

In MinVar condition, the minimum standard deviation is 
11.96% with a return of 6.07%. The Sharpe ratio is 0.508. 
The lowest risk is the red point on the MM efficient Fron-
tier in Figure 4. In MaxSharpe condition, the maximum 
Sharpe ratio is 0.898 with a return of 18.90% and a stan-
dard deviation of 21.04%. In Figure 4, the highest Sharpe 
ratio is the blue point passing the capital allocation line (IM 
CAL Constr1).
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Figure 4
2) Constraint 2

In MinVar condition, the minimum standard deviation is 
12.47% with a return of 6.90%. The Sharpe ratio is 0.553. 
The lowest risk is the red point on the MM efficient Fron-

tier in Figure 5. In MaxSharpe condition, the maximum 
Sharpe ratio is 0.901 with a return of 19.81% and a stan-
dard deviation of 21.99%. In Figure 1, the highest Sharpe 
ratio is the blue point.

Figure 5
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3) Constraint 3

In MinVar condition, the minimum standard deviation is 
11.95% with a return of 5.85%. The Sharpe ratio is 0.49. 
The lowest risk is the red point on the MM efficient Fron-
tier in Figure 3. In MaxSharpe condition, the maximum 

Sharpe ratio is 0.901 with a return of 19.81% and a stan-
dard deviation of 21.99%. In Figure 6, the highest Sharpe 
ratio is the green point. The results MaxSharpe in Con-
straint 3 are the same as in Constraint 2.

Figure 6

4.7 Constraints Comparison in MM and IM

4.7.1 MM

The optimal CAL is the portfolio with Constraint 3. If the 
investor is risk-aversion, Constraint 1 will be shown in the 
future and the Sharpe ratio will be low. However, Con-
straint 1 has a lower risk than two other constraints. If the 

investors are eager to maximize the Sharpe ratio, I sug-
gest helping clients choose Constraints 2&3. Constraints 
2&3 have the same results in MaxSharpe. In MinVar, 
Constraint 2 is the best. I think the Constraints 2&3 are 
suitable for investors who can accept the risks. Thus, what 
kind of performance depends on the investor’s risk prefer-
ence and pursuit of returns.
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Figure 7
4.7.2 IM

The three CALs almost overlap in Figure 9. The Efficient 
Frontier of Constraints 2&3 is very close. The investors 
with risk-averse will be suggested to choose Constraint 
1. The Efficient Frontier of Constrain 1 gradually tends 
to be constant. Constraints 2&3 has the same results in 

MaxSharpe. However, Constraint 3 in MinVar performs 
the worst in all conditions. Under similar risks (11.95%-
11.96%) in MinVar of Constraint 3, I recommend choos-
ing Constraint 1, which has a higher return. In MinVar, I 
think Constraint 2 is better than two other constraints for 
the highest Sharpe Ratio in three conditions.

Figure 9
4.7.3 MM & IM

In the Figures below, the figures are contrasted in MM and 
IM with Constrain 1&2&3. There is no obvious difference 
between MM and IM with Constrain 1. On the contrary, 

the visible difference between MM and IM with Constrain 
1&2. The IM has a lower risk than MM. MM has a higher 
return and Sharp Ratio in three conditions. According to 
Figure 12, If stocks with correlated residuals have high al-
phas, then the index model may lead to a worse portfolio 
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than the full Markowitz model.

Figure 10

Figure 11
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Figure 12

5. Monte Carlo Simulation
Monte Carlo simulation is an important tool with a wide 
range of applications in business and finance. When we 
run a Monte Carlo simulation, we are interested in observ-
ing different possible realizations of future events. These 
realizations are generated by analyzing the distribution 
of historical data and calculating its mean and variance. 
Monte Carlo simulations are used in corporate finance, in-

vestment valuation, asset management, risk management, 
insurance liability estimation, option pricing, and other 
derivatives. The significant uncertainty in finance makes 
Monte Carlo simulations a valuable tool for improving the 
decision-making process when several random variables 
are at play.
In Excel, I random weights of 10 stocks and give the 
50,000 standard deviations and returns. By pulling down 
tables to 50,000 rows, I get the Permissible Portfolios.
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Permissible Portfolios in Excel
In Python, I put all the data of optimal portfolio of stocks 
and the daily logarithm return of securities. I give the for 
loop and random weights in 1000000. It forms the graph 
of “Mean and standard deviation of returns of randomly 

generated portfolios”. The Minimum Variance Frontier of 
the graph gives Max return and Min risk in randomly gen-
erated portfolios in Python below.

Permissible Portfolios in Python

Max return and Min risk in random generated portfolios in Python
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6. Conclusion
From the development of model theories to data testing, 
the data selection problem is addressed under two condi-
tions. When comparing it with the Gaussian distribution, 
the monthly excess return is considered conventional data 
for analysis in Excel. However, when I use daily data in 
Python, it is more extensive and convenient for users to 
operate on the Monte Carlo with 1,000,000 random daily 
logarithmic return.
Perform hypothesis testing on the MM (Markowitz Mod-
el) and IM (Index Model) with constraints using Excel 
or Python, and I can conclude that there is no significant 
difference in the average returns between the Index Model 
and the Markowitz Model. Conservative investors tend to 
avoid risks (risk aversion) and can invest their funds in the 
optimal portfolio of stocks formed using the Index Mod-
el, as the given risk level is low. In contrast, aggressive 
investors, who have a high-risk, high-return profile, are 

willing to take risks and can invest their funds in the opti-
mal portfolio of stocks formed by the Markowitz model if 
there are no constraints.
Since these 10 stocks are from different industries, it is 
challenging to make a comprehensive comparison of 
companies within the same industry. Therefore, future 
researchers should focus on research subjects that include 
companies in the same industry and give priority to those 
with strong liquidity. Additionally, future studies are ex-
pected to utilize different analytical tools, applying the 
concept of two models.
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