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ABSTRACT: 
The performance of the stock market in the financial domain profoundly impacts the economic well-being of many 
individuals. Thus, accurately predicting stock prices is an essential task. Although traditional financial time series 
models such as ARIMA and GARCH play a crucial role in predictions, they may fail to capture all the market dynamics. 
This study explores a composite model combining ARIMA, GARCH, and Stacking techniques (ARIMA-GARCH-S) 
to enhance the accuracy of predictions. The research data are derived from the stock closing price time series data of 
“Amazon” from June 29, 2020, to April 12, 2022, with 653 entries and “Caterpillar” from February 8, 2021, to October 
21, 2022, with 621 entries. The model’s fitting performance is evaluated by comparing the fitting residual plots and 
variance graphs, while predictive performance is determined by comparing the MAPE, RMSE, and EC statistical 
metrics. The results indicate that the ARIMA-GARCH-S composite model has a significant predictive advantage over 
the ARIMA model. This finding not only offers a new avenue for model innovation but also provides financial market 
participants with a more precise and stable prediction tool, aiding them in making more informed investment decisions.
KEYWRODS: Stock Market Forecasting; ARIMA-GARCH-Stacking Model; Time Series Analysis; Fitted 
Residuals; MAPE/RMSE/EC Indicators

1. Introduction
The stock market has always been the focus of financial 
research and investment strategies. Since its inception, the 
stock market has not only been a place for the exchange 
of capital but also a nexus for information, expectations, 
and market confidence. For most people, the performance 
of the stock market directly or indirectly affects their 
financial health, including retirement funds, education 
savings, or other long-term investments. Therefore, 
predicting stock prices and market trends has always 
been a core issue of concern for investors, scholars, and 
policymakers. Enhancing the accuracy of predictions for 
stock closing price time series data is not only vital for 
investors and financial institutions but also profoundly 
impacts the daily lives of ordinary people. Financial time 
series models have a long history of application and are 
often considered classic methods in this domain. However, 
with the increasing complexity of financial markets, 
a single prediction model might no longer adequately 
capture market dynamics. Improving the accuracy of 
predicting stock closing price time series data has become 
an urgent issue. This study aims to explore the integration 
of existing models in search of higher predictive accuracy. 
Through the developed composite model, we hope to 
provide a new perspective and method for time series 
forecasting.

2. Literature Review
Zhang Yingchao et al. (2019) used the Shanghai Stock 
Exchange Index data and applied the ARIMA(4,1,4) 
model for predictions, demonstrating that the ARIMA 
model could provide accurate forecasts in the short 
term for the financial forecasting field[1]. Ariyo et al. 
(2014) predicted stock prices for Nokia and Zenith Bank 
based on the ARIMA model, achieving satisfactory 
forecast results, with a regression standard error of 
3.5808 for Nokia and 0.7872 for Zenith Bank[2]. Hassan 
Mohammadi et al. (2010) employed various GARCH 
models to study the behavior of oil returns and their 
conditional variance, emphasizing the advantages of 
the MA(1)–EGARCH(1,1) and MA(1)-APARCH(1,1) 
models in out-of-sample predictions[3]. Ray Chou (1988) 
used the GARCH(1,1) estimation technique to study 
the persistence of stock return volatility, proving that 
stock return volatility has persistent characteristics[4]. 
Yu Yaning et al. (2018) and Xu Shuya et al. (2019) 
respectively used the ARIMA-GARCH model to predict 
stock prices for Guizhou Maotai and Yutong Bus, both 
proving that compared to a single model, the ARIMA-
GARCH model has superior predictive performance[5]
[6]. Farah Hayati Mustapa et al. (2019) predicted the 
S&P 500 index stock prices, finding the ARIMA(2,1,2)-
GARCH(1,1) model most suitable, which showed higher 
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accuracy in dynamic predictions[7]. Bohdan Pavlyshenko 
et al. (2018) utilized stacking techniques to combine 
models and forecast sales of over 1000 products covered 
by more than 800,000 stores, proving that combining 
models using stacking significantly enhances forecasting 
accuracy[8]. Building on this foundation, this study 
introduces the stacking concept into the ARIMA-GARCH 
composite model. While both ARIMA and GARCH 
models have applications in financial research, combining 
the two and then introducing stacking to establish a 
meta-model for time series analysis is relatively rare. 
This composite approach captures market volatility and 
trends from different angles, and by using deep learning 
concepts, it can filter out the optimal combination pattern, 
further enhancing the model’s predictive performance. 
This research will use stock closing price time series data 
from listed companies on Yahoo Finance (2000-2020). To 
ensure the comprehensiveness of the study, two groups of 
listed company stock closing price data will be randomly 
selected, and two independent experiments will be 
conducted.

3. Method
3.1 Principle of the ARIMA Model:
The ARIMA model, an acronym for “Autoregressive 
Integrated Moving Average Model,” is a commonly used 
model in time series analysis. Introduced in the early 
1970s by Box and Jenkins, this renowned method for 
forecasting time series is also known as the Box-Jenkins 
model. It combines elements of Autoregressive (AR) 
models, Integration (I) - representing differencing - and 
Moving Average (MA) models. An ARIMA(p,d,q) model 
is formulated as:

X c Xt i i t i t j j t j
(d d) = + + +å åP q

= - = -1 1ϕ θ( )  

Where pdq denote the order of the autoregressive, 
differencing, and moving average parts of the model, 
respectively, Xt

(d) represents the time series after d times 

of differencing,[c is a constant,[t is the random error term 

at time t,[ϕi and θ jcorrespond to the coefficients of the AR 
and MA parts, respectively.
In essence, the AR part predicts current observations using 
past values, the MA part uses past forecast errors, and the 
I part stabilizes the time series through differencing.
This study initially applies the ARIMA model for 
preliminary fitting of stock closing prices. Through this 
model, we aim to capture the main trends, patterns, 
autocorrelations, and seasonalities present in the time 
series.

3.2 Principle of the ARCH Model:
T h e  A R C H  ( A u t o r e g r e s s i v e  C o n d i t i o n a l 
Heteroskedasticity) model, introduced by Engle in 1982, 
is designed to account for conditional heteroskedasticity 
within financial time series. The core idea is that the 
volatility at a given time is based on the shocks from 
previous periods. This implies that a large shock in the 
past indicates potentially greater volatility in the future 
and vice versa. This model structure allows for the capture 
of volatility clustering commonly observed in financial 
time series, where periods of high volatility tend to be 
followed by high volatility, and periods of low volatility 
follow low volatility. Mathematically, it is expressed as:

rt t= +µ   and σ α αt i i t i
2 2= +0 1åq

= -

Where rt represents the return at time t, t is the shock,[σ 2 
is the conditional variance
The parameters of the model are estimated using the 
Maximum Likelihood Estimation method.

3.3 Principle of the GARCH Model:
The GARCH (Generalized Autoregressive Conditional 
Heteroskedas t ic i ty)  model  i s  a  robust  tool  for 
characterizing volatility in financial time series. It is a 
model for describing and predicting the phenomenon of 
conditional heteroskedasticity in time series. It extends the 
ARCH model by assuming that current variance depends 
not only on the squared errors from the previous q periods 
but also on the variances from the previous p periods, 
thus capturing the phenomenon of volatility clustering 
more effectively. The GARCH model is formed by adding 
lagged squared residuals to the ARCH model:

σ α α β σt i i t i j j t j
2 2 2= + +0 1 1å åq p

= - = -

W h e r e  åi i t i
q
= -1α 

2  r e p r e s e n t  t h e  A R C H  t e r m s , 

åp
j j t j= -1β σ 2  represent the GARCH terms, β jis the 

coefficient of the GARCH term, which represents the 
effect of the variance in period t-j on the variance at time t.
Overall, the GARCH model describes how the volatility 
of a time series depends on past errors and past volatility. 
This model is particularly useful in the analysis of 
financial time series since the returns on financial assets 
often exhibit volatility clustering which means large 
fluctuations tend to follow large fluctuations and small 
fluctuations tend to follow small fluctuations..
Upon the forecasts generated by the ARIMA model, this 
study employs the GARCH model to fit the residuals of 
the ARIMA model, which helps capture the underlying 
volatility in the time series and enhances the precision of 
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the forecasts.

3.4 Principle of Stacking Technique:
Stacking is an ensemble learning technique where 
multiple models are used as base models to construct a 
meta-model. This meta-model learns how to best combine 
the predictions of the base models to further improve 
forecast accuracy. In this study, we first train the ARIMA 
and GARCH models independently to obtain forecast 
values for the time series:
y ARIMA XˆARIMA t= ( )
ARIMA t ARIMA= -X ŷ

 ĜARCH ARIMA=GARCH ( )

Where Xt is the time series data used for training, ARIMA

represents the fitting residuals from the ARIMA model.
Subsequently, the predictions from ARIMA and the 
forecasts of residuals from GARCH are combined and 
analyzed through linear regression to act as a meta-model:
y yˆ ˆmeta ARIMA GARCH= + + +α β β1 2 ˆ

Where α is the intercept, β1 and β2 are regression 
coefficients,  denotes the error term.
By minimizing the sum of squared residuals, the values 
for α, β1, β2 are estimated. The constructed meta-model 
selects the optimal linear combination of the ARIMA and 
GARCH models to further improve the model’s precision 
and performance.

4. Experiments
4.1 Experimental Procedure:
(1) Randomly select a segment of stock closing price time 
series data for a particular company from a database.
(2) Perform the Ljung-Box test on the data for white 
noise. If the stock series is a white noise series, it indicates 
that the data set has no statistical predictive value, and a 
new set of data must be chosen.
(3) If the stock series is not a white noise series, indicating 
that the data has statistical predictive value, continue with 
the Durbin-Watson (DW) test for autocorrelation. If the 
stock data shows weak autocorrelation, the data set is not 
suitable for building an ARIMA model, and another data 
set must be selected.
(4) If the stock data exhibits sufficient autocorrelation, an 
ARIMA model can be constructed for analysis, and the 
experimental process continues.
(5) Divide the data into a prediction set and a training set; 
the prediction set is for evaluation, and the training set is 
for training the model.
(6) Conduct an Augmented Dickey-Fuller (ADF) test on 

the stock series to check for stationarity. If the series is 
not stationary, differencing is applied until it becomes 
stationary.
(7) Select the optimal ARIMA model order (p, q) by using 
the Akaike Information Criterion (AIC), with d confirmed 
by the ADF test mentioned above.
(8) Construct the ARIMA model and train it with the 
training set to obtain the forecast results and fitting 
residuals of the ARIMA model.
(9) Establish a GARCH model based on the fitting 
residuals of the ARIMA model, and use the AIC to select 
the most appropriate GARCH model order.
(10) Combine the fitting results of the ARIMA and 
GARCH models as base models and input them into the 
meta-model established by Stacking to perform regression 
analysis, thus obtaining the optimal combination method 
for the ARIMA and GARCH models and, consequently, 
the ARIMA-GARCH-S model.
(11) Obtain the forecast results and fitting residuals of the 
ARIMA-GARCH-S model.
(12) Perform a white noise test on the fitting residuals of 
the ARIMA-GARCH-S model. If the result is not white 
noise, further optimization of the model is needed. If the 
result is white noise, proceed to evaluate and compare 
the performance of the ARIMA model and the ARIMA-
GARCH-S model.
(13) Repeat the above steps to complete two sets of 
independent experiments.

4.2 Experiment 1:
4.2.1 Original Data

Randomly selected from Yahoo Finance, the stock closing 
price time series data for “Amazon” from June 29, 2020, 
to April 12, 2022, includes a total of 653 entries. The 
original time series data is shown in Figure 1.



4

Dean&Francis

Figure 1. Amazon 2020/6/29-2022/4/12 Stock Closing Price Time Series Data
4.2.2 Data Processing

First, perform the Ljung-Box test for white noise on the 
stock series. Assuming the time series is white noise, the 
Ljung-Box test result P-Values = 0.000000, P < 0.05, 
rejects the null hypothesis, indicating that the stock series 
is not white noise and has statistical analytical value.
Continue with the DW test on the stock series. The DW 
test statistic is 1.075158, indicating a relatively strong 
negative autocorrelation, thus an ARIMA model can be 
established for analysis.
Finally, conduct an ADF test for stationarity on the 
stock series. Assuming the time series is non-stationary. 
Without differencing, the ADF test statistic is -4.036741, 
with a P-Value of 0.001230, P < 0.05, rejecting the null 

hypothesis, indicating that the time series is already 
stationary and meets the requirements for constructing an 
ARIMA model.
4.2.3 Dataset Division

Divide the stock series data, using the first 649 entries for 
the training set to train the model, and the last 4 entries for 
the prediction set to evaluate the model’s performance.
4.24 ARIMA Model Parameter Selection

With d = 0 confirmed by the ADF test, construct several 
ARIMA models with orders ranging from (1,5), and select 
the optimal ARIMA model order (p, q) by comparing the 
Akaike Information Criterion (AIC). The optimal model 
confirmed is ARIMA(3,0,4), and the AIC results for each 
model are shown in Table 1.

Table 1. AIC values for ARIMA models of different orders
ARIMA order (p,q) AIC Value ARIMA order (p,q) AIC Value

(3, 4) 2.155569 (4, 1) 5.803636
(5, 2) 2.477351 (2, 3) 5.891981
(1, 2) 3.096501 (2, 5) 6.395334
(3, 5) 3.560064 (4, 4) 6.528158
(3, 1) 3.954647 (1, 4) 7.050423
(5, 3) 3.963581 (2, 4) 7.198567
(1, 1) 3.984731 (1, 5) 7.272507
(1, 3) 5.080768 (2, 1) 7.468202
(2, 2) 5.082294 (5, 5) 7.503022
(5, 4) 5.365728 (5, 1) 7.700762
(4, 5) 5.567539 (3, 3) 7.783244
(3, 2) 5.797856 (4, 2) 8.390644
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4.25 ARIMA Model Construction and GARCH Model 
Parameter Selection

For the obtained ARIMA(3,0,4) model, use the training 
set data to train the ARIMA model and acquire its fitting 
residual time series data. Use the residuals to establish a 
GARCH model, similarly using AIC as the criterion to 
select the most appropriate GARCH model order. The 
optimal model obtained is GARCH(1,5).
4.26 Construction of ARIMA-GARCH-S Model
The fitting results of the ARIMA and GARCH models 
are used as the base models, input into the meta-model 
established by Stacking, and regression analysis is 

conducted to derive the optimal combination of the 
ARIMA and GARCH models. The coefficients obtained 
for the final model are
β1 = -5.02686, β2 = 0.47987, α = 926.39523
The ARIMA-GARCH-S model obtained is:
y yˆ ˆmeta ARIMA GARCH= - + +926.39523 5.02686 0.47987 ˆ
4.27 Model Prediction
Use the established ARIMA(3,0,4) and ARIMA-
GARCH-S models to predict Amazon’s stock closing price 
for the subsequent four days. Compare the results with the 
prediction set data to get the preliminary residuals. The 
specific results are shown in Table 2.

Table 2. results of ARIMA(3,0,4) and ARIMA-GARCH-S models prediction
Day 1 Day 2 Day 3 Day 4

Actual 153.34766 152.23483 151.12199 150.78751
ARIMA(3,0,4) 154.27303 154.21621 154.19899 154.19378

ARIMA-GARCH-S 153.33748 152.26185 151.06718 150.82547
Residuals of ARIMA-

GARCH-S 0.01018 -0.02702 0.05481 -0.03796

Performing the Ljung-Box white noise test on the 
ARIMA-GARCH-S model gives a result of P-Values 
= 0.999816, P > 0.05, which means the null hypothesis 
cannot be rejected, indicating that the stock series is 
white noise and that all underlying patterns has already 
been successfully captured, so there is no need for further 
optimization of the model.

4.28 Accuracy Comparison and Analysis
To compare the fitting effects and model performance 
of ARIMA(3,0,4) and ARIMA-GARCH-S models in 
multiple dimensions, this study first used residual time 
series plots, residual frequency distribution histograms, 
and variance plots to visually compare the fit and fitting 
residuals of the two models.

Figure 2. ARIMA-GARCH-S fitted residual time series plot
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Figure 3. ARIMA(3,0,4) fitted residual time series plot

Figure 4. Histogram of the frequency 
distribution

Figure 5. Histogram of the frequency 
distribution of the fitted residuals of 

ARIMA-GARCH-S of the fitted residuals of 
ARIMA(3,0,4)

From the time series plot of the residuals and the 
histogram of the frequency distribution of the residuals, 
it can be clearly seen that the fitted residuals of the 
ARIMA-GARCH-S model are much smaller than the 
fitted residuals of the ARIMA model, which is about two 
orders of magnitude less, and thus the fitting effect of 
the ARIMA-GARCH-S model is better than that of the 
ARIMA model.

Figure 6. Variance plots of ARIMA-
GARCH-S

Figure 7. Variance plots of ARIMA(3,0,4)
By comparing the variance plots, it can be clearly seen 
that the ARIMA-GARCH-S model has a smaller degree 
of bias and a smaller range of fluctuation than the 
ARIMA model, and therefore the fitting performance of 
the ARIMA-GARCH-S model is better than the ARIMA 
model.
In order to further examine the predictional performance 
and accuracy of the models, this study quantitatively 
compares the models’ prediction residuals using the Mean 
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Absolute Percentage Error(MAPE), Root Mean Square 
Error(RMSE) and the Equal Coefficient(EC). The formula 
for calculating the statistics is as follows:

MAPE = ´
1
n At
åt

n
=1

A Ft t- 100%

RMSE A F= -
1
n
åt t t

n
=1( )2

EC =
å åt t t t

n n

å
= =1 1A F

t t t
n
=

2 2

1

+

( )F A- 2

Where n is the number of observations, At is the t-th actual 

value, Ft is the t-th predicted value
The final calculations are shown in Table 3.

Table 3. Predictive test of the closing price of the stock “Amazon” for 4 days
test statistic ARIMA(3,0,4) ARIMA-GARCH-S

MAPE 1.55015% 0.02146%
RMSE 2.54228 0.03633

EC 0.94028 0.99999

According to the test results, in the 4-day stock closing 
price prediction, the ARIMA model has a MAPE of 
1.55015%, an RMSE of 2.54228, and an EC of 0.94028.
The ARIMA-GARCH-S model has a MAPE of 0.02146%, 
an RMSE of 0.03633, and an EC of 0.99999.This shows 
that the ARIMA -GARCH-S model’s prediction error as 
a whole is substantially smaller than that of the ARIMA 
model, which is about two orders of magnitude, so the 
prediction results and model performance of the ARIMA-

GARCH-S model are better than that of the ARIMA 
model.

4.3 Experiment 2:
4.3.1 Original Data

Randomly selected from Yahoo Finance, the stock closing 
price time series data for “Caterpillar” from February 8, 
2021, to October 21, 2022, includes a total of 621 entries. 
The original time series data is shown in Figure 8.

 

Figure 8. Caterpillar 2021/2/8-2022/10/21 Stock Closing Price Time Series Data
4.3 2 Data Processing

First, perform the Ljung-Box test for white noise on the 
stock series. Assuming the time series is white noise, the 
Ljung-Box test result P-Values = 0.000000, P < 0.05, 
rejects the null hypothesis, indicating that the stock series 

is not white noise and has statistical analytical value.
Continue with the DW test on the stock series. The DW 
test statistic is 1.18376, indicating a relatively strong 
negative autocorrelation, thus an ARIMA model can be 
established for analysis.
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Finally, conduct an ADF test for stationarity on the 
stock series. Assuming the time series is non-stationary. 
Without differencing, the ADF test statistic is -2.294219, 
with a P-Value = 0.173839,[P > 0.05, fail to reject null 
hypothesis, indicating that the time series is non-stationary 
and needs to be differentiated.
After the time series was first-order differenced, the 

ADF test was performed again, and the ADF test statistic 
is -22.390577, with a P-Value of 0.000000, P < 0.05, 
rejecting the null hypothesis, indicating that the time 
series is now stationary and meets the requirements for 
constructing an ARIMA model. The time series after the 
first-order differencing is shown in Figure 9.

Figure 9. Caterpillar 2021/2/8-2022/10/21 First Order Differential Stock Closing Price
4.3.3 Dataset Division

Divide the stock series data, using the first 617 entries for 
the training set to train the model, and the last 4 entries for 
the prediction set to evaluate the model’s performance.
4.34 ARIMA Model Parameter Selection
With d = 1 confirmed by the ADF test, construct several 
ARIMA models with orders ranging from (1,5), and select 
the optimal ARIMA model order (p, q) by comparing the 
Akaike Information Criterion (AIC). The optimal model 
confirmed is ARIMA(3,1,2)
4.35 Construction of ARIMA-GARCH-S Model
For the obtained ARIMA(3,1,2) model, use the training 
set data to train the ARIMA model and acquire its fitting 
residual time series data. Use the residuals to establish a 

GARCH model, similarly using AIC as the criterion to 
select the most appropriate GARCH model order. The 
optimal model obtained is GARCH(1,1). The fitting 
results of the ARIMA and GARCH models are used as 
the base models, input into the meta-model established by 
Stacking, and regression analysis is conducted to derive 
the optimal combination of the ARIMA and GARCH 
models.
4.36 Model Prediction

Use the established ARIMA(3,1,2) and ARIMA-
GARCH-S models to predict Caterpillar’s stock closing 
price for the subsequent four days. Compare the results 
with the prediction set data to get the preliminary 
residuals. The specific results are shown in Table 4.

Table 4. results of ARIMA(3,1,2) and ARIMA-GARCH-S models prediction
Day 1 Day 2 Day 3 Day 4

Actual 183.55000 184.41000 180.53999 190.22000
ARIMA(3,1,2) 182.00733 183.64589 184.75632 186.79243

ARIMA-GARCH-S 183.28622 184.41951 180.87853 190.13575
Residuals of ARIMA-

GARCH-S 0.26378 -0.00951 -0.33854 0.08425



9

Dean&Francis

Performing the Ljung-Box white noise test on the 
ARIMA-GARCH-S model gives a result of P-Values 
= 0.998972, P > 0.05, which means the null hypothesis 
cannot be rejected, indicating that the stock series is 
white noise and that all underlying patterns has already 
been successfully captured, so there is no need for further 

optimization of the model.
4.37 Accuracy Comparison and Analysis
MAPE, RMSE and EC are calculated for ARIMA(3,1,2) 
and ARIMA-GARCH-S models and the final results are 
presented in Table 5.

Table 5. Predictive test of the closing price of the stock “Caterpillar” for 4 days
test statistic ARIMA(3,1,2) ARIMA-GARCH-S

MAPE 1.71867% 0.09513%
RMSE 2.84997 0.21873

EC 0.91792 0.99963

It can be seen that the overall prediction error of the 
ARIMA-GARCH-S model is substantially smaller than 
that of the ARIMA model, so the prediction results and 
model performance of the ARIMA-GARCH-S model are 
better than those of the ARIMA model.

5. ARIMA-GARCH-S Model Strengths 
and Potential Application
5.1 Advantages analysis:
The ARIMA-GARCH-S model showcases a set of notable 
strengths, as evidenced by our experiments. Its precise 
fitting capability is highlighted by significantly smaller 
residuals compared to the ARIMA model alone, indicating 
a more accurate capture of the underlying time series 
trends. This precision is visually supported by the fitted 
residual time series plots, residual frequency distribution 
histograms, and variance plots.
The model also exhibits enhanced stability, especially 
when modeling the volatility of residuals, which is 
crucial for capturing dynamic changes in stock prices. As 
volatility is a principal concern in stock market analysis, 
the ability to provide a stable outlook on price movements 
is invaluable.
A significant improvement in predictive accuracy is 
evident through the comparison of statistical metrics 
such as MAPE, RMSE, and EC. The ARIMA-GARCH-S 
model’s predictive residuals are reduced by approximately 
two orders of magnitude, showcasing a substantial 
enhancement over the traditional ARIMA approach.

5.2 Application Prospects:
The ARIMA-GARCH-S model, as demonstrated in this 
study, holds significant advantages for forecasting stock 
prices, offering extensive potential for application within 
financial sectors that demand high accuracy and stability 
in predictions.Its efficacy in risk management allows for 
a refined approach to predicting and managing market 

volatility, thereby enhancing investment risk strategies. 
In the realm of algorithmic trading, the model’s accurate 
predictions are invaluable, potentially boosting trade 
strategy effectiveness and profitability. Additionally, for 
asset pricing, the model provides precise forecasting 
inputs, crucial for investors seeking to make informed 
decisions. Collectively, these applications highlight the 
transformative potential of the ARIMA-GARCH-S model 
in financial analysis and trading.
5.3 Future Developments:

In future research, combining deep learning and ensemble 
learning methods with existing time series analysis 
models represents a particularly enticing direction. This 
integration is likely to significantly enhance the model’s 
ability to process complex data structures and capture 
nonlinear patterns, thereby leading to groundbreaking 
progress in forecasting accuracy and model robustness. 
Specifically, deep learning models are capable of 
automatically learning and extracting features from data, 
while ensemble learning methods improve prediction 
accuracy and robustness by consolidating multiple 
models. By leveraging these advanced machine learning 
techniques, we can anticipate the development of more 
powerful combined forecasting models. These models 
will not only be adept at capturing complex relationships 
within time series data but will also exhibit greater 
adaptability and precision when confronted with new, 
unknown market conditions.

6. Conclusion
The experimental results indicate that the ARIMA-
GARCH-S model has significant advantages over the 
ARIMA model in multiple aspects. By examining the 
fitted residual time series plots, residual frequency 
distribution histograms, and variance plots, it is evident 
that the fitted residuals of the ARIMA-GARCH-S model 
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are substantially smaller than those of the ARIMA model, 
suggesting a more precise fitting capability. Moreover, 
the volatility of the hybrid model is considerably less 
than that of the ARIMA model, indicating its enhanced 
stability in capturing the dynamic changes of stock 
prices. Additionally, the comparison of three statistical 
metrics——MAPE, RMSE, and EC—further confirms 
the superiority of the ARIMA-GARCH-S model in 
forecasting. Relative to the ARIMA model, the overall 
predictive residuals of the hybrid model are reduced by 
approximately two orders of magnitude, significantly 
improving the model’s predictive accuracy.
The findings of this study are valuable academically, as 
they provide new combinatory ideas for model innovation, 
and they also have profound implications for practical 
applications in the financial market. A more accurate and 
stable model for predicting stock closing prices means 
that market participants, such as investors, fund managers, 
and financial analysts, can assess future stock price 
trends more accurately, thereby making wiser investment 
decisions.
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