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Abstract.
Causal inference is a statistical approach that aims to understand and quantify the causal relationship between variables, 
allowing us to determine the impact of one variable on another while accounting for potential confounding factors. 
In this study, we chose the Infant Health and Development Program (IHDP) dataset to test whether high-quality early 
childhood education and medical care will enhance their cognitive and academic ability. We use some common and 
classic algorithms to achieve this study by calculating the CATE (Conditional Average Treatment Effect) of the dataset; 
if the result is a negative number, that means early treatment doesn’t improve children’s further ability; if the result 
is a positive number, that means treatment improves it. After fitting the targeted models, BART(Bayesian Additive 
Regression Trees) and Metalearners, into this dataset, we found out that all the models will get positive CATE, which 
means that these early treatments positively affect children’s future development. Also, we can judge which model gives 
us a more accurate result according to the standard variance of TE(treatment effect). The result of this study will provide 
us with an insightful idea about whether we should give children some treatments regarding education and medical care 
and which model is more suitable for this casual inference test.
Keywords: IHDP, CATE, BART, Metalearners.

1 Introduction
The Infant Health and Development Program (IHDP) 
dataset is a longitudinal dataset that was collected from 
1985 to 1990 in eight sites across the United States. The 
dataset includes information on 985 low birth-weight 
infants and their families randomly allocated to a control 
or intervention group. The intervention group received 
high-quality early childhood education and medical 
care, while the control group received standard care. The 
dataset includes information on the children’s cognitive 
and academic development, as well as their health and 
family background [1].
In this study, we employ established causal inference 
models to examine the CATE (Conditional Average 
Treatment Effect) on the dataset. CATE represents the 
average treatment effect of a specific intervention or 
treatment on a particular subgroup, considering specific 
covariates or conditions. Estimating CATE enables us to 
comprehend the variability in treatment effects among 
different subgroups within the population, allowing for the 
identification of heterogeneous treatment effects that may 
vary based on individual characteristics or circumstances. 
But when we consider all the conditions, CATE becomes 
ATE (Average Treatment Effect), and in this article, we 
mainly accurately calculate the ATE of the IHDP dataset 
[2].
In this article, we introduce the Metalearners and 
Bayesian Additive Regression Trees, two algorithms 
widely used in the area regarded as causal inference to 

calculate CATE. The former is a simple and convenient 
algorithm to achieve, and the latter is a classic one. It uses 
regression trees and combines a sum-of-trees model and 
regularization prior. Meanwhile, it is flexible in nonlinear 
and interactive aspects of fitting data.
The ways of calculating the average treatment effect 
are as follows: we use the original dataset to train 
models. Prepare the cleaning data and choose BART and 
Metalearners models to calculate CATE. Estimate the 
treatment effect model using the selected models. The 
average difference in outcomes between the treated and 
control groups can be used to interpret. Finally, check 
the results, including standard deviations, confidence 
intervals, and final CATE. The results from both 
algorithms can tell us the effect of early treatment on 
children and which model has the most accurate result 
among others.

2 Literature Review
Causal inference is a fundamental problem in many fields, 
including statistics, machine learning, economics, and 
social sciences. It aims to infer the causal relationship 
between variables from observational or experimental 
data. In recent years, the development of causal inference 
methods has advanced significantly, and new methods 
have been proposed to deal with different types of data 
and research questions. In this literature review, we will 
introduce some of the most common causal inference 
methods and their applications in various fields.
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2.1 Propensity Score Matching
Propensity score matching is a widely used for estimating 
causal effects from observational data. Propensity 
scores, the conditional probabilities of receiving the 
treatment given the reported covariates, are used to 
match treated and control units. The matched pairs have 
similar propensity scores, which reduces the bias due to 
confounding factors.

2.2 Instrumental Variables
Instrumental variables estimate causal effects in situations 
with unobserved confounding factors. The method relies 
on an instrumental variable, which is a variable that affects 
the treatment assignment but is not directly related to the 
outcome. By using the instrumental variable, researchers 
can isolate the effect of the treatment from the effect of the 
confounding factors.

2.3 Regression Discontinuity Design
Regression discontinuity design estimates causal effects 
when the treatment assignment is based on a continuous 
variable, and the treatment effect varies discontinuously 
at a cutoff point. The method involves comparing the 
outcomes of units just above and below the cutoff point, 
effectively creating a randomized experiment around the 
cutoff point.

2.4 Difference-in-Differences
Difference-in-differences is a method for estimating causal 
effects in situations with a treatment group and a control 
group, and the treatment assignment is not random. The 
method involves comparing the changes in outcomes 
before and after the treatment for the treatment group and 
the control group. If the treatment effect is significant, 
the changes in outcomes for the treatment group will 
significantly differ from those for the control group.

2.5 Bayesian Additive Regression Trees
Bayesian additive regression trees (BART) have 
been widely used in causal inference tasks and have 
succeeded significantly in various applications. One 
major advantage of BART is its flexibility in modeling 
complex nonlinear relationships between the covariates 
and the response variable. For example, Hill used BART 
to estimate heterogeneous treatment effects in randomized 
experiments and showed that BART outperformed 
other methods, such as regression trees and propensity 
score matching, regarding mean squared error and bias 
[3]. Wager applied BART to the problem of estimating 
treatment effects in observational studies with unmeasured 
confounding and showed that it could yield accurate 
estimates of the average treatment effect even when 
traditional methods failed [4].

Another advantage of BART is its ability to handle high-
dimensional data, which is increasingly common in 
modern data analysis. Linero and Pérez-Stable proposed a 
Bayesian hierarchical model based on BART to estimate 
causal effects in high-dimensional settings. They showed 
it could identify important predictors and achieve better 
prediction performance than other methods, such as Lasso 
and random forests [5].
Moreover, BART has been applied to many other causal 
inference tasks, such as estimating causal mediation 
effects [6], detecting causal interactions [7], and 
estimating personalized treatment rules.
In summary, BART has demonstrated its effectiveness and 
flexibility in various causal inference tasks, making it a 
powerful tool in causal inference.

2.6 MetaLearners
Meta-learners have been widely used in causal inference 
to estimate heterogeneous treatment effects and have 
achieved notable success in various applications. One 
popular Meta-learner is the “Tlearner,” which estimates 
the conditional expectation of the outcomes separately 
for control and treated units using base learners such as 
linear regression or tree-based methods and then takes the 
difference between these estimates to obtain the CATE.
Another widely used meta-learner is the Slearner, which 
uses a single estimator to predict the outcome with all 
characteristics and the treatment indicator and calculates 
the difference in forecast values when the treatment 
assignment indicator changes. The Xlearner seeks to 
combine the benefits of the Tlearner and Slearner by 
estimating the outcome function separately for control and 
treated units using two base learners and then combining 
them using weights dependent on the degree of overlap 
between the covariate distributions of the two groups.
MetaLearners have also been applied in various realms, 
such as healthcare, economics, and education, to 
estimate treatment effects and identify subpopulations 
that may benefit the most from certain treatments. For 
example, in a study on the impact of antidepressants on 
depression symptoms, the Tlearner and Xlearner were 
used to estimate heterogeneous treatment effects based 
on the patient’s characteristics, and the results showed 
that patients with more severe symptoms tended to 
benefit more from the treatment [8]. In another study on 
the effects of a math intervention program on students’ 
achievement, Slearner and Xlearner were used to identify 
subgroups of students that benefited the most from the 
program, and the results showed that the program had the 
greatest effect on students with low baseline math scores 
[9].
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3 Methods
3.1 BART
3.1.1. Decision Tree

3.1.1.1. Brief introduction
Bayesian Additive Regression Trees (BART) is a machine 
learning technique that combines Bayesian modeling 
and decision trees for regression and classification tasks. 
BART models a response variable as the sum of many tree 
models, where each tree is assigned a weight drawn from 
a Bayesian prior distribution. BART can model nonlinear 
and non-additive relationships between predictors and 
the response and can also handle interactions and high-
dimensional predictor spaces.
BART is a flexible and powerful method applied in 
various domains, such as economics, finance, biology, 
and healthcare. It has been used for prediction, variable 
selection, and causal inference tasks, and it has shown 
competitive performance compared to other popular 
machine learning algorithms.
3.1.1.2. Mathematical definition
The model can be written as:

	 y f xi m i i= + +α εå
m

M

=1

( )   (1)

Where is the response variable for the th observation, xi 
is the vector of predictor variables for the th observation, 
α is the intercept term, fm is the the regression tree in the 
ensemble, and ε i is the error term. The regression trees 
are built using a recursive partitioning algorithm and are 
combined using a Bayesian model averaging approach. 
BART uses a prior distribution on the regression trees that 
encourages smoothness, prevents overfitting, and allows 
for complex interactions between the predictors.
The regression tree topologies, prior parameters, and 
error variance are only a few of the model’s parameters 
sampled from the posterior distribution using the Markov 
Chain Monte Carlo (MCMC) process to fit the model. The 
MCMC algorithm can be used to obtain point estimates 
and credible intervals for the model parameters and 
perform hypothesis testing and model selection [10].
3.1.1.3. Regression Trees.

Regression trees are a popular nonparametric statistical 
method for modeling relationships between a dependent 
variable and a set of independent variables. They are often 
used for prediction, where the goal is to find a model 
function that accurately predicts the dependent variable’s 
value according to the independent variables’ values.
The basic idea behind regression trees is to recursively 
partition the data into subsets based on the independent 

variables’ values. At each step, the algorithm chooses 
the variable and the split point that minimizes the sum of 
squared errors (SSE) of the resulting subsets. This process 
is repeated until some stopping criterion is met, such as a 
minimum subset size or a maximum tree depth.
By moving up the tree from the root to a leaf node 
representing the values of the independent variables, the 
resulting tree can forecast the value of the dependent 
variable for fresh observations. The predicted value is 
typically the mean or median of the dependent variable in 
that leaf node [10].
3.1.2. Ensembles of Decision Trees

Usually, we introduce devices to reduce the complexity 
of decision trees and get a fit that better adapts to the 
complexity of the data at hand. One such solution relies on 
fitting an ensemble of trees where each tree is regularized 
to be shallow. As a result, each tree can only explain a 
small portion of the data individually. Only by combining 
many such trees can we provide a proper answer. Bayesian 
methods like BARTs and non-Bayesian methods like 
random forests follow this ensemble strategy. In general, 
ensemble models lead to lower generalization errors 
while maintaining the ability to fit a given dataset flexibly. 
Using ensembles also helps to alleviate the step-ness. The 
downside of this method is that we lose the interpretability 
of a single decision tree [10].
3.1.3. The BART Model

The BART Model is used to calculate the model’s 
outcome. Here is the equation:

 y f z x N= +( , ) , ~ 0,ε ε σ( 2) (2)

Represents the observed confounding covariates and 
denotes the allocated treatment. A regularization prior and 
a sum-of-trees model comprise BART’s two components 
[10].
3.1.3.1. Sum-of-Trees Model.

The sum-of-trees model is an additive model with 
multivariate parts. It is substantially more flexible than a 
single tree model and more versatile than conventional 
additive models that use low dimensional smoothers as 
components.
First, we develop a notation for a single tree model. 
Let T denote a binary tree consisting of a set of interior 
node decision rules and a set of terminal nodes, and 
let M = ¼{µ µ µ1 2, B} denote a set of parameter values 
associated with each of the B terminal nodes of T. 
Prediction for a specific input vector x value is carried out 
as follows: If x is associated with terminal node b of T by 
the sequence of decision rules from top to bottom, it is 
then assigned the µb value associated with this terminal 
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node. We use use (  ;  ,  )x T M  to denote the function 
corresponding to (T M), which assigns a µb ÎM to x. 
Using this notation, The function equivalent to that assigns 

a to is denoted by the symbol. By using this notation, we 
can more clearly state our sum-of-trees model as:

 Y g x T M g x T M g x T M N= + +¼+ +( ; , ; , ; , , ~ 0,1 1 2 2) ( ) ( m m ) ε ε σ( 2) (3)

A sum-of-trees model acquires greater representation 
flexibility as the number of trees increases, and this, along 
with our regularization prior, results in outstanding out-of-
sample prediction accuracy [10].
3.1.3.2.A Regularization Prior
BART uses a Bayesian framework for model fitting, 
specifying a prior distribution over the model’s 
parameters. One of the key contributions of BART is 
the introduction of a novel prior distribution called the 
“regularization prior.” The regularization prior is used 
to encourage smoothness in the function that maps 
covariates to responses, which helps to prevent overfitting 
and improve the model’s generalization performance.
The regularization prior is a Gaussian process with a 
specific covariance function that depends on a parameter 
controlling the degree of smoothness. When this parameter 
is small, the prior places little emphasis on smoothness, 
and the resulting function can be very complex and overfit 
to the training data. When the parameter is large, the prior 
emphasizes smoothness, and the resulting function will 
be smoother and less likely to overfit. The value of this 
parameter can be selected through cross-validation or 
other model selection techniques.
The regularization prior is used in conjunction with a prior 
distribution over the trees in the BART model to create a 
joint prior distribution over the entire model. The resulting 
joint prior distribution is then used to define the likelihood 
function for the observed data and perform Bayesian 
inference to obtain posterior distributions over the model 
parameters [10].

3.2 MetaLearners
We have four learners in MetaLearners, which are S, T, 
X, and R. They are different algorithms used in the Meta-
Learners approach for estimating the conditional average 
treatment effect (CATE) in causal inference; in this study, 
we will use three of them to apply.
3.2.1 Tlearner

The conditional outcome expectancies for treated and 
control units separately are estimated using base learners 
in two phases, and the difference between the estimates 
is then used to estimate heterogeneous treatment effects. 
Linear regression or tree-based techniques might be used 
as the basis for learners. The latter is referred to as the 
“two-tree” estimator, and we name this method the “ 
Tlearner,” where “T” stands for “two.”[11].

3.2.2 Slearner

Another comparable technique is using all the attributes 
and the treatment indication to estimate the outcome 
without giving the treatment indicator any special 
consideration. The predicted individual CATE is the 
difference between the anticipated values when the 
treatment-assignment indicator is switched from control 
to treatment, with all other variables held constant. This 
approach, which uses a single estimator, is known as the 
“Cleaner” and has been examined with regression trees 
and Bayesian additive regression trees (BARTs) as the 
base learners [11].
3.2.3 Xlearner

The Xlearner is a meta learner that combines the strengths 
of both the Tlearner and Slearner approaches to improve 
the estimation of CATE. The Xlearner first uses two base 
learners to estimate the outcome function separately 
for treated and control units, similar to the T learner. 
In the second stage, the estimated outcome functions 
are combined to obtain the CATE estimate, with the 
weight assigned to each estimator determined by the 
degree of covariate distribution overlap between the two 
groups, similar to the Cleaner. Research has shown that 
the Xlearner outperforms the Tlearner and Slearner in 
situations where treatment effects vary significantly across 
different subpopulations and where the overlap between 
the covariate distributions of the treated and control 
groups is moderate to low [12].

4 Result
Here, we show all the CATE results and TE’s standard 
variance in Table 1 below. From the table, we can see 
that all the values of CATE are positive, and the S-learner 
model has the least standard variance of TE, which means 
that the early treatment brings children a positive effect 
on their future development and the S-learner model 
can provide us with the most accurate results compared 
to other models. Now we know which model is more 
suitable for this casual inference problem.

Table 1. The conditional average treatment 
effect of four models.

CATE Standard Variance of 
TE

BART 2.4417 3.2425
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X-learner 4.0706 0.5550

T-learner 3.9909 0.6303

S-learner 3.9426 0.3735

5 Conclusion
The research aims to identify the effectiveness of 
early childhood education and medical care services 
on children’s cognitive and academic development by 
estimating the conditional average treatment effect. Based 
on the Infant Health and Development Program dataset, 
we use the Meta-learners algorithm and BART model in 
machine learning to estimate the CATE. The result of the 
two methods obtained four positive CATEs, which means 
these education and medical services would increase their 
ability in children’s cognitive and academic abilities in 
their lives. So, based on the result, we better give children 
some suitable education and medical care in their early 
stages.
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