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Briefly Explore the Combinatorial Game

Gong Cheng

Abstract:
The paper talks about a series of games called combinatorial games. Combinatorial games are two-person games with 
perfect information, no chance moves, and a win-or-lose outcome. To be precise, a combinatorial game is a game that 
satisfies the following conditions. The paper also talks about the rules of the combinatorial game, such as how many 
players the game has and the rules of the game specify for both players and each position that moves to other positions 
a legal move.  Then, the meaning of the P-positions and N-positions were introduced. After that, the paper talks about 
the typical combinatorial game- the game of Nim, another example of the combinatorial game, to illustrate the paper’s 
point of view. The paper talks about the whole rules of this example game, such as the number of players and the initial 
configuration of the piles/heaps. The author gives several strategies and talks about why these strategies can help the 
players win combinatorial games. The paper gives two cases to illustrate the game rules and give a better understanding 
after all. In the end, the paper gives a Python3 program for combinatorial games, making the ideas of combinatorial 
games more comprehensive.
Keywords: combinatorial game, Nim, position

1. Brief Introduction to Combinatorial 
Game
1.1 What is a Combinatorial Game
Combinatorial games are two-person games with 
perfect information, no chance moves, and a win-or-lose 
outcome. To be precise, a combinatorial game is a game 
that satisfies the following conditions. (Siegel, 2013)
(1) There are two players.
(2) There is a set, usually finite, of possible positions in 
the game.
(3) The rules of the game specify for both players, and 
each position that moves to other positions is a legal 
move. If the rules make no distinction between the 
players, that is, if both players have the same options of 
moving from each position, the game is called impartial; 
otherwise, the game is called partisan.
(4) The players alternate moving.
(5) The game ends when a position is reached from which 
no moves are possible for the player whose turn it is 
to move. Under the normal play rule, the last player to 
move wins. Under the misery play rule, the last player 
to move loses. If the game never ends, it is declared a 
draw. However, we shall nearly always add the following 
condition, called the Ending Condition. This eliminates 
the possibility of a draw.
(6) The game ends in a finite number of moves, no matter 
how played.
Besides, some important things have been omitted above. 
No random moves, such as the rolling of dice or the 
dealing of cards, are allowed. This rules out games like 

backgammon and poker. A combinatorial game is a game 
of perfect information: simultaneous and hidden moves 
are not allowed. This rules out battleship and scissors-
paper-rock. No draws in a finite number of moves are 
possible. This rules out tic-tac-toe. (Erdös, & Selfridge, 
1973)

1.2 P-positions and N-positions
So now, let’s talk about P-positions and N-positions. 
Those positions winning for the Previous player (the 
player who just moved) are called P-positions, and those 
positions winning for the Next player to move are called 
N-positions. In impartial combinatorial games, one can 
find in principle which positions are P- P-positions and 
N-positions by (possibly transfinite) induction using the 
following labeling procedure starting at the terminal 
positions. We say a position in a game is terminal if no 
moves from it are possible.
The following three statements define the characteristic 
property of P-positions and N-positions recursively.
(1) All terminal positions are P-positions.
(2) From every N-position, there is at least one move to a 
P-position.
(3) From every P-position, every move is to an N-position.

2. A Typical Combinatorial Game- the 
Game of Nim
The following rules describe the Game of Nim- “Given 
several piles in which each pile contains some numbers 
of stones/coins. In each turn, a player can choose only 
one pile and remove any number of stones (at least one) 
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from that pile. The player who cannot move is considered 
to lose the game (i.e., one who takes the last stone is 
the winner).” For example, consider that there are two 
players- A and B, and initially there are three piles of 
coins having 3, 4, Five coins in each of them, as shown 
below. We assume that the first move is made by A. See 
the figure below for a clear understanding of the whole 
gameplay.

Game model
In conclusion, this game depends on two factors:
(1) The player who starts first.
(2) The initial configuration of the piles/heaps.
We can predict the winner of the game before even 
playing the game! Nim-Sum: The cumulative XOR value 
of the number of coins/stones in each pile/heap at any 
point of the game is called Nim-Sum at that point. “If 
both A and B play optimally (i.e., they don’t make any 
mistakes), then the player starting first is guaranteed to 
win if the Nim-Sum at the beginning of the game is non-
zero. Otherwise, if the Nim-Sum evaluates to zero, then 
player A will lose.” Here are the optimal strategies.
(1) If the XOR sum of ‘n’ numbers is already zero, then 

there is no possibility to make the XOR sum zero by a 
single reduction of a number.
(2) If the XOR sum of ‘n’ numbers is non-zero, then there 
is at least a single approach by which the XOR sum is 
zero if you reduce a number.
Initially, two cases could exist.
Case 1: Initial Nim Sum is zero. In this case, if played 
optimally, B wins, which means B would always prefer to 
have a Nim sum of zero for A’s turn. So, as the Nim Sum 
is initially zero, whatever number of items A removes, the 
new Nim Sum would be non-zero (as mentioned above). 
Also, as B would prefer the Nim sum of zero for A’s turn, 
he would then play a move to make the Nim Sum zero 
again (which is always possible, as mentioned above). 
The game will run as long as there are items in any of the 
piles, and in each of their respective turns, A would make 
Nim Sum non-zero, and B would make it zero again,  and 
eventually, there will be no elements left, and B being 
the one to pick the last wins the game. It is evident by the 
above explanation that the optimal strategy for each player 
is to make the Nim Sum for his opponent zero in each of 
their turn, which will not be possible if it’s already zero.
Case 2: Initial Nim Sum is non-zero. Going by the optimal 
approach, A would make the Nim Sum zero(which is 
possible as the initial Nim Sum is non-zero, as mentioned 
above). Now, in B’s turn, as the Nim Sum is already zero, 
whatever number B picks, the Nim Sum would be non-
zero, and A can pick a number to make the Nim Sum zero 
again. This will go as long as there are items available in 
any pile. And A will be the one to pick the last item. So, 
as discussed in the above cases, it should be obvious that 
the Optimal strategy for any player is to make the Nim 
Sum zero if it’s non-zero, and if it is already zero, then 
whatever moves the player makes now can be countered.
Now, let’s see the coding of a Python3 program that 
implements the game of Nim.

# A Python3 program to implement Game of Nim. The program 
# assumes that both players are playing optimally
, import random

COMPUTER = 1

HUMAN = 2
# A Structure to hold the two parameters of a move # 
move has two parameters-

# 1) pile_index = The index of pile from which stone is 
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# going to be removed
# 2) stones_removed = Number of stones removed from the 
# pile indexed = pile_index */

Class move:
def   init (self): self.

pile_index = 0

self.stones_removed = 0

# piles[] -> Array having the initial count of stones/coins 
# in each piles before the game has started.
# n -> Number of piles

# The piles[] are having 0-based indexing

# A function to output the current game state.

def showPiles(piles, n): print(“Current 
Game Status -> “) print(*piles)

# A function that returns True if game has ended and # 
False if game is not yet over

def gameOver(piles, n):

for i in range(n):

if (piles[i] != 0):

return False

return True

# A function to declare the winner of the game

def declareWinner(whoseTurn):

if (whoseTurn == COMPUTER): 
print(“\nHUMAN won”)

else:

print(“\nCOMPUTER won”)
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return

# A function to calculate the Nim-Sum at any point # 
of the game.
def calculateNimSum(piles, n): 

nimsum = piles[0]
for i in range(1, n):

nimsum = nimsum ^ piles[i]

return nimsum

# A function to make moves of the Nim Game

def makeMove(piles, n, moves):

nim_sum = calculateNimSum(piles, n)

# The player having the current turn is on a winning

# position. So he/she/it play optimally and tries to make 
# Nim-Sum as 0
if (nim_sum != 0):

for i in range(n):

# If this is not an illegal move # 
then make this move.
if ((piles[i] ^ nim_sum) < piles[i]):

moves.pile_index = i

moves.stones_removed = piles[i]-(piles[i] ^ nim_sum) 
piles[i] = (piles[i] ^ nim_sum)
break

# The player having the current turn is on losing
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# position, so he/she/it can only wait for the opponent 
# to make a mistake(which doesn’t happen in this program 
# as both players are playing optimally). He randomly
# choose a non-empty pile and randomly removes few stones 
# from it. If the opponent doesn’t make a mistake,then it 
# doesn’t matter which pile this player chooses, as he is 
# destined to lose this game.

# If you want to input yourself then remove the rand() 
# functions and modify the code to take inputs.
# But remember, you still won’t be able to change your 
# fate/prediction.
else:

# Create an array to hold indices of non-empty piles non_
zero_indices = [None for _ in range(n)]
count = 0

for i in range(n):

if (piles[i] > 0): non_zero_
indices[count] = i count += 1

moves.pile_index = int(random.random() * (count)) moves.
stones_removed = 1 + \

int(random.random() * (piles[moves.pile_index])) 
piles[moves.pile_index] -= moves.stones_removed

if (piles[moves.pile_index] < 0): piles[moves.pile_
index] = 0

return

# A C function to play the Game of Nim

def playGame(piles, n, whoseTurn):

print(“\nGAME STARTS”) 
moves = move()
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while (gameOver(piles, n) == False): 
showPiles(piles, n) makeMove(piles, 
n, moves)

if (whoseTurn == COMPUTER):

print(“COMPUTER removes”, moves.stones_removed, “stones 
from pile at index “, moves.pile_index)

whoseTurn = HUMAN

else:

print(“HUMAN removes”, moves.stones_removed,

“stones from pile at index”, moves.pile_index) 
whoseTurn = COMPUTER

showPiles(piles, n) 
declareWinner(whoseTurn) return

def knowWinnerBeforePlaying(piles, n, whoseTurn): 
print(“Prediction before playing the game -> “, end=””) if 
(calculateNimSum(piles, n) != 0):

if (whoseTurn == COMPUTER): 
print(“COMPUTER will win”)

else:

print(“HUMAN will win”)

else:

if (whoseTurn == COMPUTER): 
print(“HUMAN will win”)

else:

print(“COMPUTER will win”)

return
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# Driver program to test above functions # 
Test Case 1

piles = [3, 4, 5] n = 
len(piles)

# We will predict the results before 
playing # The COMPUTER starts first 
knowWinnerBeforePlaying(piles, n, COMPUTER)

# Let us play the game with COMPUTER starting first 
# and check whether our prediction was right or not 
playGame(piles, n, COMPUTER)

# This code is contributed by phas-
ing17

Conclusion
In recent years, research on some games combined 
with computational complexity or algorithm analysis in 
computer science has also been quite active in the research 
circle of combinatorial game theory. The paper not only 
gives an understanding of the combinatorial game but also 
hopes that future study could focus on the computational 
complexity and algorithm analysis to further understand 

this field.
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