
1

Dean&Francis

Briefly Explore the Combinatorial Game

Gong Cheng

Abstract:
The paper talks about a series of games called combinatorial games. Combinatorial games are two-person games with
perfect information, no chance moves, and a win-or-lose outcome. To be precise, a combinatorial game is a game that
satisfies the following conditions. The paper also talks about the rules of the combinatorial game, such as how many
players the game has and the rules of the game specify for both players and each position that moves to other positions
a legal move. Then, the meaning of the P-positions and N-positions were introduced. After that, the paper talks about
the typical combinatorial game- the game of Nim, another example of the combinatorial game, to illustrate the paper’s
point of view. The paper talks about the whole rules of this example game, such as the number of players and the initial
configuration of the piles/heaps. The author gives several strategies and talks about why these strategies can help the
players win combinatorial games. The paper gives two cases to illustrate the game rules and give a better understanding
after all. In the end, the paper gives a Python3 program for combinatorial games, making the ideas of combinatorial
games more comprehensive.
Keywords: combinatorial game, Nim, position

1. Brief Introduction to Combinatorial
Game
1.1 What is a Combinatorial Game
Combinatorial games are two-person games with
perfect information, no chance moves, and a win-or-lose
outcome. To be precise, a combinatorial game is a game
that satisfies the following conditions. (Siegel, 2013)
(1) There are two players.
(2) There is a set, usually finite, of possible positions in
the game.
(3) The rules of the game specify for both players, and
each position that moves to other positions is a legal
move. If the rules make no distinction between the
players, that is, if both players have the same options of
moving from each position, the game is called impartial;
otherwise, the game is called partisan.
(4) The players alternate moving.
(5) The game ends when a position is reached from which
no moves are possible for the player whose turn it is
to move. Under the normal play rule, the last player to
move wins. Under the misery play rule, the last player
to move loses. If the game never ends, it is declared a
draw. However, we shall nearly always add the following
condition, called the Ending Condition. This eliminates
the possibility of a draw.
(6) The game ends in a finite number of moves, no matter
how played.
Besides, some important things have been omitted above.
No random moves, such as the rolling of dice or the
dealing of cards, are allowed. This rules out games like

backgammon and poker. A combinatorial game is a game
of perfect information: simultaneous and hidden moves
are not allowed. This rules out battleship and scissors-
paper-rock. No draws in a finite number of moves are
possible. This rules out tic-tac-toe. (Erdös, & Selfridge,
1973)

1.2 P-positions and N-positions
So now, let’s talk about P-positions and N-positions.
Those positions winning for the Previous player (the
player who just moved) are called P-positions, and those
positions winning for the Next player to move are called
N-positions. In impartial combinatorial games, one can
find in principle which positions are P- P-positions and
N-positions by (possibly transfinite) induction using the
following labeling procedure starting at the terminal
positions. We say a position in a game is terminal if no
moves from it are possible.
The following three statements define the characteristic
property of P-positions and N-positions recursively.
(1) All terminal positions are P-positions.
(2) From every N-position, there is at least one move to a
P-position.
(3) From every P-position, every move is to an N-position.

2. A Typical Combinatorial Game- the
Game of Nim
The following rules describe the Game of Nim- “Given
several piles in which each pile contains some numbers
of stones/coins. In each turn, a player can choose only
one pile and remove any number of stones (at least one)

2

Dean&Francis

from that pile. The player who cannot move is considered
to lose the game (i.e., one who takes the last stone is
the winner).” For example, consider that there are two
players- A and B, and initially there are three piles of
coins having 3, 4, Five coins in each of them, as shown
below. We assume that the first move is made by A. See
the figure below for a clear understanding of the whole
gameplay.

Game model
In conclusion, this game depends on two factors:
(1) The player who starts first.
(2) The initial configuration of the piles/heaps.
We can predict the winner of the game before even
playing the game! Nim-Sum: The cumulative XOR value
of the number of coins/stones in each pile/heap at any
point of the game is called Nim-Sum at that point. “If
both A and B play optimally (i.e., they don’t make any
mistakes), then the player starting first is guaranteed to
win if the Nim-Sum at the beginning of the game is non-
zero. Otherwise, if the Nim-Sum evaluates to zero, then
player A will lose.” Here are the optimal strategies.
(1) If the XOR sum of ‘n’ numbers is already zero, then

there is no possibility to make the XOR sum zero by a
single reduction of a number.
(2) If the XOR sum of ‘n’ numbers is non-zero, then there
is at least a single approach by which the XOR sum is
zero if you reduce a number.
Initially, two cases could exist.
Case 1: Initial Nim Sum is zero. In this case, if played
optimally, B wins, which means B would always prefer to
have a Nim sum of zero for A’s turn. So, as the Nim Sum
is initially zero, whatever number of items A removes, the
new Nim Sum would be non-zero (as mentioned above).
Also, as B would prefer the Nim sum of zero for A’s turn,
he would then play a move to make the Nim Sum zero
again (which is always possible, as mentioned above).
The game will run as long as there are items in any of the
piles, and in each of their respective turns, A would make
Nim Sum non-zero, and B would make it zero again, and
eventually, there will be no elements left, and B being
the one to pick the last wins the game. It is evident by the
above explanation that the optimal strategy for each player
is to make the Nim Sum for his opponent zero in each of
their turn, which will not be possible if it’s already zero.
Case 2: Initial Nim Sum is non-zero. Going by the optimal
approach, A would make the Nim Sum zero(which is
possible as the initial Nim Sum is non-zero, as mentioned
above). Now, in B’s turn, as the Nim Sum is already zero,
whatever number B picks, the Nim Sum would be non-
zero, and A can pick a number to make the Nim Sum zero
again. This will go as long as there are items available in
any pile. And A will be the one to pick the last item. So,
as discussed in the above cases, it should be obvious that
the Optimal strategy for any player is to make the Nim
Sum zero if it’s non-zero, and if it is already zero, then
whatever moves the player makes now can be countered.
Now, let’s see the coding of a Python3 program that
implements the game of Nim.

A Python3 program to implement Game of Nim. The program
assumes that both players are playing optimally
, import random

COMPUTER = 1

HUMAN = 2
A Structure to hold the two parameters of a move #
move has two parameters-

1) pile_index = The index of pile from which stone is

3

Dean&Francis

going to be removed
2) stones_removed = Number of stones removed from the
pile indexed = pile_index */

Class move:
def init (self): self.

pile_index = 0

self.stones_removed = 0

piles[] -> Array having the initial count of stones/coins
in each piles before the game has started.
n -> Number of piles

The piles[] are having 0-based indexing

A function to output the current game state.

def showPiles(piles, n): print(“Current
Game Status -> “) print(*piles)

A function that returns True if game has ended and #
False if game is not yet over

def gameOver(piles, n):

for i in range(n):

if (piles[i] != 0):

return False

return True

A function to declare the winner of the game

def declareWinner(whoseTurn):

if (whoseTurn == COMPUTER):
print(“\nHUMAN won”)

else:

print(“\nCOMPUTER won”)

4

Dean&Francis

return

A function to calculate the Nim-Sum at any point #
of the game.
def calculateNimSum(piles, n):

nimsum = piles[0]
for i in range(1, n):

nimsum = nimsum ^ piles[i]

return nimsum

A function to make moves of the Nim Game

def makeMove(piles, n, moves):

nim_sum = calculateNimSum(piles, n)

The player having the current turn is on a winning

position. So he/she/it play optimally and tries to make
Nim-Sum as 0
if (nim_sum != 0):

for i in range(n):

If this is not an illegal move #
then make this move.
if ((piles[i] ^ nim_sum) < piles[i]):

moves.pile_index = i

moves.stones_removed = piles[i]-(piles[i] ^ nim_sum)
piles[i] = (piles[i] ^ nim_sum)
break

The player having the current turn is on losing

5

Dean&Francis

position, so he/she/it can only wait for the opponent
to make a mistake(which doesn’t happen in this program
as both players are playing optimally). He randomly
choose a non-empty pile and randomly removes few stones
from it. If the opponent doesn’t make a mistake,then it
doesn’t matter which pile this player chooses, as he is
destined to lose this game.

If you want to input yourself then remove the rand()
functions and modify the code to take inputs.
But remember, you still won’t be able to change your
fate/prediction.
else:

Create an array to hold indices of non-empty piles non_
zero_indices = [None for _ in range(n)]
count = 0

for i in range(n):

if (piles[i] > 0): non_zero_
indices[count] = i count += 1

moves.pile_index = int(random.random() * (count)) moves.
stones_removed = 1 + \

int(random.random() * (piles[moves.pile_index]))
piles[moves.pile_index] -= moves.stones_removed

if (piles[moves.pile_index] < 0): piles[moves.pile_
index] = 0

return

A C function to play the Game of Nim

def playGame(piles, n, whoseTurn):

print(“\nGAME STARTS”)
moves = move()

6

Dean&Francis

while (gameOver(piles, n) == False):
showPiles(piles, n) makeMove(piles,
n, moves)

if (whoseTurn == COMPUTER):

print(“COMPUTER removes”, moves.stones_removed, “stones
from pile at index “, moves.pile_index)

whoseTurn = HUMAN

else:

print(“HUMAN removes”, moves.stones_removed,

“stones from pile at index”, moves.pile_index)
whoseTurn = COMPUTER

showPiles(piles, n)
declareWinner(whoseTurn) return

def knowWinnerBeforePlaying(piles, n, whoseTurn):
print(“Prediction before playing the game -> “, end=””) if
(calculateNimSum(piles, n) != 0):

if (whoseTurn == COMPUTER):
print(“COMPUTER will win”)

else:

print(“HUMAN will win”)

else:

if (whoseTurn == COMPUTER):
print(“HUMAN will win”)

else:

print(“COMPUTER will win”)

return

7

Dean&Francis

Driver program to test above functions #
Test Case 1

piles = [3, 4, 5] n =
len(piles)

We will predict the results before
playing # The COMPUTER starts first
knowWinnerBeforePlaying(piles, n, COMPUTER)

Let us play the game with COMPUTER starting first
and check whether our prediction was right or not
playGame(piles, n, COMPUTER)

This code is contributed by phas-
ing17

Conclusion
In recent years, research on some games combined
with computational complexity or algorithm analysis in
computer science has also been quite active in the research
circle of combinatorial game theory. The paper not only
gives an understanding of the combinatorial game but also
hopes that future study could focus on the computational
complexity and algorithm analysis to further understand

this field.

References
Siegel, A. N. (2013). Combinatorial game theory (Vol. 146).
American Mathematical Soc..
Erdös, P., & Selfridge, J. L. (1973). On a combinatorial game.
Journal of Combinatorial Theory, Series A, 14(3), 298-301.
The Game of Nim. (n.d.). Code Review Stack Exchange. https://
codereview.stackexchange.com/questions/284216/the-game-of-
nim

