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Abstract:
The awakening process sets the tone for daily performance. Traditional alarm sounds like radar or sirens, are often 
abrupt and startling, which can trigger stress response and emotional problems. Existing research that focuses on 
human physiological indicators during arousal has not reached the impact of wake-up alarms. This study aims to 
apply photoplethysmographic (PPG) and electrodermal activity (EDA) sensors to meticulously assess the physical and 
emotional impact triggered by different alarm tones during wake-up process. Those includes human stress responses 
such as heart rate, EDA, and emotional state. We selected four type of alarm clock sounds, bird singing, ocean sound, 
radar sound and old telephone. Participants in this study will first put on EDA and PPG sensors before they take a 
quick sleep. Then, they will be awakened by either natural or harsh wake-up alarms without knowing it in advance. 
During the experiment, EDA and PPG sensors were used to monitor their physiological states and the data will be 
analyzed to identify stress patterns and trends. We specially focus on the sudden change when the alarm goes off and the 
recovery process followed by. The results indicate that participants awaken to harsh alarms had a more intense change 
in heart rate and emotional stress, while the signal in group of natural sounds was smoother. Our findings provide 
empirical evidence on the relationship between wake-up alarm sounds and stress responses. There is strong evidence(p-
value<0.025) that arousal with more natural sounds causes less heart rate and emotional changes.
Keywords: alarm clock, sleep, wake-up process, stress, PPG.

1. Introduction
An essay published by Frédric Dutheil suggests that sleep-
ing influences one’s cognitive performance [1]. Many 
researchers underscore the effect of sleep on one’s mental 
and physical status, particularly during the period when 
we first wake up [2]. The awakening process critically sets 
the tone for later performance [3]. In addition, sound is a 
significant indicator that influences the physiological state 
of the human body to varying degrees [4]. Surveys show 
that 70.15% of people wake up by using an alarm clock [5]. 
Traditional alarm sounds like radar or sirens, often abrupt 
and startling, can elicit stress response [6]. Waking up by 
a sudden alarm can cause dizziness and potentially lead-
ing to cardiovascular and psychiatric problems in the long 
run [7]. The negative effects of being awaken by an alarm 
clock is proved by Crabb and Peter B that alarm clock use 
had larger negative correlations with self-regulation abil-
ity [8]. Seung-Il and Tsuchiya discussed the association 

between the phase of a 90-minute periodic signal and the 
subjective quality of sleeping. This wake-up support sys-
tem proved that high frequency outside sound can serious-
ly damage our sleep quality [9]. Researchers have thought 
of many ways to solve this problem. Kumar and Dhiraj 
designed a smart alarm clock to help the user to wake up 
gently by increasing brightness and playing the user’s fa-
vorite music [10]. Landry and Isbell also designed a new 
generation clock that automatically modify our routines 
by deciding on an alarm time to improve our sleep quality 
from alarm clock side [11]. However, those researches 
overlooked the physiological effects of wake-up alarms. 
In recent medical studies, mobile health devices have 
become increasingly popular because of its real-time 
monitoring ability and wide availability. Those real-time 
collected data can reflect participants’ psychological states 
and stress level. After processing the raw data with ma-
chine learning algorithm, it can tell participants’ emotion 
and its accuracy has reached a high level for electrodermal 
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activity (EDA) and photoplethysmogram (PPG) [12-15]. 
They are solid evidence that those mobile health devices 
can detect our data and accurately reflect our health condi-
tion. In addition, another study researched the natural and 
harsh alarm sound features and proved their behavioural 
impact, which sets a solid base for our study [15, 16]. Our 
hypothesis is that a sudden change will occur in our EDA 
and PPG data when the alarm goes off and high-pitched 
alarm clock leads to a more significant change than nat-
ural alarm clock sounds. Besides, harsh alarm clock may 
increase one’s stress level to a extend much higher than 
the gentle alarm clock.

2. Methodology
2.1 Participants
The study recruited a total of 30 participants aged be-

tween 18 and 24 years old (average age was 20.13±1.81), 
consisting of 17 males and 13 females. Participants must 
have no history of cardiovascular disease and hearing 
impairment. Participants were randomly divided into two 
groups, each with 15 people. Both groups were asked to 
take a 30-minute nap, with one group being awakened by 
a harsh alarm clock sound and the other group by a natural 
alarm clock sound. Participants were informed that they 
would be awakened with as scheduled alarm clock, but 
the specific type of sound was not be disclosed. Each par-
ticipant was required to conduct the experiment alone in 
a different soundproof room to prevent interference from 
other sounds. After waking up, they were asked to fill an 
emotion questionnaire to record the feeling of waking up. 
The questionnaire example is showed in Table 1.

Table 1. Emotional questionnaire.
Emotion 1 - slightly 2 - a little 3 - moderately 4 - quite a bit 5 - extremely
interested 

excited 

upset 

hostile 

enthusiastic 

irritable 

alert 

nervous  

attentive 

active 

2.2 Data collection
Firstly, 30 seconds of excerpts of each ringtone were 
recorded by auditory recorder in iPhone for frequency 
domain analysis. A wearable physiological monitor-
ing device was developed based on the Seeed Studio 
XIAO nRF52840 (Sense) and Expansion Board Base for 
XIAO. The expansion board was equipped with a battery 
charging module, an OLED display and a SD card slot. 
The board featured breakout interfaces for analog signals 
and serial communication through the Grove connectors. 
A PulseSensor PPG fingertip sensor Rev1 and an EDA an-
alog sensor based on the Grove interface were connected 
to the development board via the expansion board. A lith-

ium-ion battery was attached for mobile measurements. 
The components of the wearable device are showed in 
Figure 1.
The PPG sensor was affixed to the subject’s middle finger 
tip with adhesive Velcro straps. The EDA sensor was at-
tached using a finger-cot to make sure the electrodes were 
well contacted with the proximal interphalangeal joints 
of the index and ring fingers. The schematic diagram of 
the wearable is depicted in Figure 2.  The device was 
programmed with the Arduino framework. It would start 
recording the analog data from sensors 3 minutes before 
the alarm clock setting off and keep recording for another 
2 minutes and save data to an SD card.
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Fig 1. Components of wearable device.

Fig 2. Wearing the device.
2.3 Data analysis
The platform of data analysis was Python. Scipy, numpy, 
pandas and matplotlib libraires were used to process and 
visualize data. Firstly, a Fast Fourier Transform (FFT) 
was applied to the recorded ringtones to conduct a spec-
tral analysis. The ringtones were categorized into harsh 
and natural groups through the overall energy distribution 
in the frequency domain [17]. In the process of heart rate 
signal data processing, the raw PPG signal was initially 
pass through a low-pass filter with a cutoff frequency of 
2.5 Hz to eliminate extraneous noise. Subsequently, the 
data was segmented by 60-second windows, with each 

window advancing by one second. Within each window, 
the peaks were identified and the number of peaks was 
counted. Then the counts were divided by 60 to determine 
the heart rate. A continuous record of heart rate varia-
tion over a 5-minute period is obtained after the window 
sliding through the signal. The average heart rate during 

the first 3 minutes sleeping ( Hsleep

−

 in formula (1)) and 

the maximum heart rate during the awakening process in 
2 minutes ( Hmax  in formula (1)) were used to define the 

range of heart rate ( Range  in formula (1)), as the formula 
(1) shows. The range serves as a criterion for assessing the 
magnitude of heart rate fluctuations.

	 Range H H= −max sleep � (1)

The EDA analog signal is processed through a Savitz-
ky-Golay filter to eliminate outliers during measurement 
[18]. The extent of EDA data variation is assessed by com-
paring it against a range determined by the average EDA 
value during sleep and the minimum EDA value upon 
awakening.   The scores from the emotional questionnaire 
were tallied and the magnitude of the absolute score was 
used to assess the intensity of emotional fluctuation.  Fi-
nally, a t-test was conducted to assess the discriminative 
ability of HRV and EDA ranges under different ringtones, 
while the Spearman correlation coefficient was employed 
to determine the correlation between emotional changes 
and the ranges of HRV and EDA.

3. Results
A total of 30 participants were included in the experiment, 
consisting of 17 males and 13 females. The harsh ring-
tone group included 15 participants with average age of 
19.58(±1.19), and the natural ringtone group also included 
15 participants with average age of 20.67(±2.13). After 
excluding invalid data caused by poor sensor contact or 
participants waking up prior to alarm clock—identified by 
PPG or EDA analog values approaching zero during any 
periods—there were 24 valid PPG and EDA analog data 
samples were obtained, with 12 samples from each group.

3



Dean&Francis

Fig 3. Frequency spectrum of four different kinds of ringtone.
After performing FFT on the four ringtones used in the 
experiment, the resulting spectrograms are shown in Fig 3. 
The Birds ringtone (primary frequencies: 48 Hz, 100 Hz) 
and Ocean ringtone (primary frequencies: 56 Hz, 104 Hz) 
displayed a smooth distribution of energy across differ-
ent frequencies. In contrast, the Radar ringtone (primary 
frequencies: 1471 Hz, 2694 Hz) and Old Ring ringtone 
(primary frequencies: 4233 Hz, 6058 Hz) had energy con-
centrated at several specific high frequencies, indicating 

a comb-like distribution pattern. Thus, Birds and Ocean 
sounds were categorized as natural ringtone, and Radar 
and Old Ring were harsh ringtone. Fig 4 shows 6 samples 
of typical heart rate signal converting from PPG analog 
signals after applying the filter. The sleep heart rate, max-
imum heart rate during awakening, and the resulting heart 
rate range for both groups of participants were obtained. 
Fig 5 indicates the distribution of the range of heart rate.

Fig 4. Smoothed Heart Rate Plot.
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Fig 5. Heart Rate distribution of two groups.

Table 2. Heart Rate Features under Harsh and Natural groups.

ringtone group heart rate during sleep 
(BPM)

max heart rate during awakening 
(BPM)

range of heart rate change 
(BPM)

harsh 53.29±5.30 73.82±7.96 20.52±5.81
natural 61.07±8.42 67.48±7.56 6.41±4.26

Table 3. EDA Value Features under Harsh and Natural groups
ringtone group EDA value during sleep min EDA value during awakening range of EDA value change

harsh 543.40±44.77 366.88±147.22 176.52±164.51
natural 425.65±186.77 371.21±190.07 54.44±81.46

The relevant statistics (mean and standard deviation) are 
recorded in Table 2. Fig 6 presents the graphical repre-
sentation of the EDA analog values for 6 samples after 
smoothing treatment. Fig 7 illustrates the distribution of 
EDA analog values under the conditions of “harsh” and 

“natural” alarm groups. Table 3 lists the average EDA 
values during sleep and the minimum EDA values upon 
awakening for both groups, along with the range by these 
two values, and provides the relevant statistical measures.
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Fig 6. Smoothed EDA value plot.

Fig 7. EDA value distribution of two groups.
The scores calculated from the emotional questionnaire 
from the two groups and relevant statistics are showed in 

Table 4. Fig 8 shows the distribution of the emotional rat-
ings.
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Table 4. Emotion Acores under Harsh and Natural groups.
ringtone group absolute scores of emotional ratings

harsh 25.33±4.80
natural 17.08±2.43

Table 5. T-test Result and Correlation Coefficient of Heart Rate Range, EDA Range and 
Emotion.

Statistic variable value
p-value (heart rate range) <0.000

p-value (EDA value range) 0.031
ρ (heart rate range – emotion) 0.601

ρ (EDA value range – emotion) 0.325

Fig 8. Emotion score distribution of two 
groups.

Finally, the t-test was conducted to evaluate the discrim-
inative ability of range of heart rate and range of EDA 
between the two groups. The p-value of t-test and the 
Spearman correlation coefficients were calculated and are 
presented in Table 5.

4. Conclusion
This study investigated the impact of various alarm tones 
on heart rate and EDA during the awakening process. 
The results demonstrated that harsh alarm tones caused a 
more pronounced increase in heart rate compared to nat-
ural tones. Specifically, the heart rates increased from a 
baseline of 40-60 bpm to a peak of 80-90 bpm or higher 

with harsh alarm tones, whereas natural tones resulted in 
a peak heart rate increase to approximately 70-80 bpm. 
This difference in heart rate range between harsh and 
natural alarms was statistically significant (p < 0.0025), 
indicating a gentler waking process with natural sounds. 
The correlation between heart rate range and emotion (ρ 
= 0.601) suggests a moderate positive relationship, indi-
cating that greater fluctuations in heart rate are associated 
with stronger emotional responses. In terms of EDA, 
responses varied widely among participants, with some 
showing minimal changes and others showing substantial 
fluctuations in skin conductance. While both EDA and 
heart rate range showed some discriminative ability, the 
correlation between EDA and emotional states was weak (ρ 
= 0.325). In contrast, PPG showed a stronger correlation 
with emotional states, making it a more reliable indicator 
in this context. The variability in EDA could be attributed 
to individual differences and external factors such as pre-
sleep activities and ambient temperature, which can affect 
skin conductance reading [20, 21].
Therefore, PPG proved to be more reliable than EDA 
in reflecting mood changes. The sensitivity of EDA is 
compromised by environmental factors and physiological 
noise, which reduces its accuracy in detecting subtle emo-
tional shifts [22]. In contrast, the PPG signal is more sta-
ble, thus providing a more precise indicator of autonomic 
nervous system activity and its relationship to emotional 
states [23]. The ability of heart rate range to capture phys-
iological responses, especially during arousal, enhances 
effectiveness the PPG in assessing the impact of alarm 
tones on mood [24]. By using PPG signal, the accuracy 
of emotional evaluation gets enhanced and it introduces 
a new biomarker for optimizing sleep quality monitoring 
and management algorithms. Consequently, it advanced 
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the understanding and management of how sleep affects 
mood, thereby improving the performance and reliability 
of related technologies in practical applications. Addi-
tionally, the application of PPG signals facilitates further 
development of mood detection technology and provides 
a solid empirical foundation for future research in sleep 
and mood management. Nevertheless, the study’s scope is 
limited by its narrow demographic sample and age range, 
which may restrict the generalizability of the findings. To 
address this limitation, future research should involve a 
more diverse and expansive participant base to enhance 
the applicability of these results. Furthermore, incorpo-
rating additional physiological and psychological vari-
ables, such as hormonal fluctuations and their impact on 
emotional responses, would offer a more comprehensive 
perspective on the effects of wake-up stimuli on overall 
well-being [19]. In summary, this study presents applica-
tion of PPG to quantify and predict an individual’s emo-
tional state upon waking. By comparing range of heart 
rate and EDA value to the emotional changes, PPG signal 
serves as a more robust physiological index closely linked 
to emotion regulation, enabling precise prediction of emo-
tional states during morning awakening.

5. Appendix
All the codes and data are uploaded on Github, link: 
https://github.com/arctic-aurora123/Wake-up-with-no-
pain
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