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Disorder and Gliomas Studied by Brain Expression Data
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Abstract: 
Both bipolar disorder and glioma are highly prevalent diseases. Bipolar disorder is a significant mental illness, while 
glioma constitutes 46% of intracranial tumors. By conducting differential expression analysis, Weighted Gene Co-
expression Network Analysis, and Gene Ontology enrichment analysis on brain expression data of bipolar disorder and 
glioma, it was found that these two conditions share three terms: protein localization to organelle, organelle localization, 
and protein maturation. Exploring targeted therapy and drug-targeting research on these three terms can offer novel 
insights for the treatment of both bipolar disorder and glioma.
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Introduction
Bipolar disorder (BP), a common mental illness, is a 
mood disorder characterized by episodes of mania or 
hypomania, as well as episodes of depression. This 
disorder is characterized by unstable and extreme moods, 
alternating between manic and depressive states. BP 
affects more than 1% of the global population, regardless 
of nationality, ethnicity, or socioeconomic level (Grande, 
Berk, Birmaher, & Vieta, 2016). Bipolar disease is one of 
the biggest causes of disability in young people, causing 
cognitive and functional impairment as well as increased 
mortality, including suicide (Grande et al., 2016).
Brain tumors, including various intracranial tumors, can 
be divided into two categories: benign and malignant.  
Malignant tumors are also called brain cancer.  Glioma is 
a highly malignant tumor that grows very fast.  Among 
brain tumors, the incidence of glioma accounts for 
approximately 46% of intracranial tumors.  Depending 
on where the tumor grows in the brain, it will compress 
different nerves and affect the function of that part.
Transcriptome is  the bridge connecting genetic 
information and biological functions.  In a broad sense, 
it refers to the sum of all RNAs that can be transcribed 
in one or a group of cells under the same physiological 
conditions, including coding RNAs and non-coding RNAs; 
in a narrow sense, it refers to all mRNAs. Transcriptome 
sequencing analysis (RNA-seq) extracts the mRNA to 
be studied, reverse-transcribes it into a cDNA library, 
adds adapters to both ends of the DNA fragments, and 
uses high-throughput sequencing technology to count the 
number of relevant small fragments to calculate different 
mRNAs(Marguerat & Bähler, 2010). At the expression 

level, it can accurately identify alternative splicing sites 
and coding sequence single nucleotide polymorphisms 
and obtain sequence information of almost all transcripts 
in a specific tissue or organ of a species in a certain state. 
RNA-seq has been widely used in basic research, clinical 
diagnosis, drug development, and other fields.
The correlation between bipolar disorder and glioma has 
been less analyzed in past studies.  By using differential 
expression analysis, enrichment analysis, and other 
analytical techniques to study the similarities and 
differences in brain expression between bipolar disorder 
and glioma, we can improve our understanding of the 
correlation between bipolar disorder and glioma and 
provide insights into the treatment of bipolar disorder.
Materials and Methods

1. Data download and collection
The main method used to analyze differential genes is 
transcriptome sequencing, which is used to compare 
the similarities and differences in brain expression 
between bipolar disorder and glioma. Starting with data 
collection, we extracted postmortem brain tissue RNA 
sequences from patients with bipolar disorder from 
the National Center for Bioinformatics Information 
(NCBI) database(Bowling KM, Jun 22, 2017). The data 
contains brain tissue RNA sequences of bipolar disorder, 
schizophrenia, depression, and control(Bowling KM, 
Jun 22, 2017). We extracted the RNA sequences of 
bipolar disorder and control and performed subsequent 
differential analyses. The glioma data were obtained from 
the National Cancer Institute GDC Data Portal, including 
RNA sequences of brain tissue from patients with and 
without glioma(NIH).
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2. Differential expression analysis from 
RNA-Seq data
The high degree of data repeatability provided by lanes 
and flow cells, which decreases the number of technical 
duplicates required for the experiments, is one benefit 
of RNA-seq technology. Additionally, RNA-seq enables 
the identification and measurement of the expression 
of isoforms and unidentified transcripts(Agarwal et al., 
2010).
The most direct way to find genes with significant 
expression changes between groups is to perform 
transcriptome sequencing to explain changes in gene 
expression levels on biological functions.  DESeq2 
mainly uses the negative binomial distribution model to 
perform differential analysis(Marguerat & Bähler, 2010). 
DESeq2 reduces technical variation among samples 
through normalization transformation and normalization 
and then estimates the dispersion of gene expression.  It 
uses a negative binomial distribution model to identify 
differentially expressed genes and correct for multiple 
testing issues.
The Limma program utilizes linear model modeling as 
its underlying methodology. Originally developed for 
analyzing microarray data, it has since been expanded to 
include RNA-seq data analysis. The limma package is 
commonly used for gene expression chip data analysis, 
and many functionalities of the edgeR package depend 
on the limma package. Limma employs the empirical 
Bayes model to enhance result reliability, making it a 
widely used tool for differential analysis. Limma-voom, 
originally designed for microarray data analysis, has 
also been adapted for transcriptome data analysis. In the 
initial stage of RNA-Seq data analysis, the raw read count 
is transformed into log2-counts-per-million (logCPM). 
Then, the mean-variance relationship is estimated and 
modeled. Two distinct modeling methods are used in this 
field: Precision Weight (voom) and empirical Bayes prior 
trend (limma-trend) (Ritchie et al., 2015).
edgeR is a widely used tool for conducting differential 
expression analysis of RNA-seq expression profiles with 
biological replicates. It employs various statistical test 
methods based on the negative binomial distribution, such 
as empirical Bayes estimation, exact test, generalized 
linear model, and quasi-likelihood test(Robinson, 
McCarthy, & Smyth, 2010). Additionally, edgeR utilizes 
the negative binomial distribution for performing 
statistical tests. Before conducting the test, it is important 
to standardize the read count expression matrix to 
eliminate any group differences that may arise due to 
library size and composition.

3. WGCNA (weighted gene co-expression 
network analysis)
After conducting differential analysis, we performed 
a Weighted Gene Co-expression Network Analysis 
(WGCNA)(Langfelder & Horvath, 2008). WGCNA 
is a method used to identify gene clusters (modules) 
exhibiting high correlations in their expression patterns. 
These modules can be characterized by their module 
feature genes (e.g., eigengenes) or hub genes, which 
connect modules to sample traits. This analysis can help 
identify potential biomarker genes or therapeutic targets. 
WGCNA focuses on assigning weights to gene co-
expression relationships and identifying sets of genes that 
change collaboratively. For instance, if a certain type of 
gene increases or decreases together in different samples, 
the expression pattern remains consistent. The weighting 
aspect involves assigning weights to gene pairs based 
on their correlation. Higher correlation results in higher 
weights, while lower correlation leads to lower weights.
The methodology of Weighted Gene Co-expression 
Network Analysis (WGCNA) consists of two main 
components: expression cluster analysis and phenotype 
correlation(Zhang & Horvath, 2005). These components 
involve four key steps: calculating correlation coefficients 
between genes, identifying gene modules, constructing 
a co-expression network, and establishing associations 
between modules and traits(Zhang & Horvath, 2005). The 
initial step involves computing the correlation coefficient, 
specifically the Person Coefficient, between two given 
genes. A screening threshold is typically set to assess 
the similarity of expression patterns. Genes that surpass 
the threshold are considered similar. However, when the 
threshold is set at 0.8, it becomes difficult to demonstrate 
a statistically significant distinction between values of 0.8 
and 0.79. Therefore, WGCNA analysis uses a weighted 
value derived from the correlation coefficient, where the 
gene correlation coefficient is exponentiated to the power 
of N. This transformation ensures that the relationships 
between genes in the network adhere to the distribution of 
scale-free networks, which is biologically significant. The 
next step involves constructing a hierarchical clustering 
tree using the correlation coefficients among genes. 
The tree branches represent distinct gene modules, each 
represented by a different color. Genes are categorized 
into modules based on expression patterns, using the 
weighted correlation coefficient to measure association. 
Genes with similar patterns are clustered together within 
these modules. Analyzing gene expression patterns makes 
it possible to categorize tens of thousands of genes into 
concise and informative modules.
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Results
1. Bipolar results:

Figure 1. plotMDS can use logFC to view 
the grouping of samples.  The distance 

between BP samples corresponds to the main 
biological variation coefficient between these 

samples.

Figure 2. plotBCV reflects the fitting of BP 
genes with different expression levels to the 

model.

Figure 3. Voom transformation converts the 
read count data into log2-counts per million 
(logCPM) by estimating the mean-variance 

relationship and using it to calculate the 
appropriate observation-level weight. Finally, 

the data is linearly modeled.

Figure 4. The three major differential 
expression analysis packages, limma, edgeR, 

and DESeq2, each have their benefits.  
This figure shows the result of comparing 
these three differential expression analysis 

packages.
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Table 1. This table compiles the top 15 genes from the three differential expression analysis 
package analysis results.  These genes have a higher probability of being differential genes.

limma_logFC adj. p edgeR_logFC FDR DESeq2_logFC padj
ENSG00000225972 -0.317025933 0.764723 -4.579606885 3.32E-06 0.435237303 0.293836
ENSG00000229344 0.57201484 0.462224 3.310005167 2.21E-05 0.300992832 0.420718
ENSG00000173702 -1.14487117 0.40319 -3.003257833 0.000131 -0.925958848 0.110307
ENSG00000230916 -0.771728124 0.458732 -3.413970532 0.000131 -0.581656502 0.449236
ENSG00000134668 0.45277879 0.537915 2.795070257 0.000131 0.358071435 0.43111
ENSG00000115386 -1.06170259 0.513752 -9.061935588 0.000245 -4.397275018 0.119342
ENSG00000015520 0.901573521 0.40319 2.645472663 0.000291 0.632647164 0.215697
ENSG00000102287 0.889185989 0.40319 1.55315816 0.000316 1.672818166 0.000279
ENSG00000127954 0.997932525 0.40319 2.001437486 0.000373 2.119968476 0.000282
ENSG00000198868 0.548597766 0.557744 3.147086396 0.000834 0.286986876 0.720211
ENSG00000163638 1.121776809 0.40319 2.433164875 0.001082 2.535730748 0.001562
ENSG00000137558 0.974169525 0.40319 2.135034039 0.002406 2.145450503 0.000229
ENSG00000240409 -0.137104675 0.901613 -3.304358852 0.002406 0.186648973 0.822344
ENSG00000188425 0.492651532 0.598424 3.407884522 0.002794 0.103523839 0.930844

Figure 5. WGCNA; Hierarchical cluster analysis detection of the co-expression clusters 
determined by WGCNA.
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Figure 6. Gene Ontology Enrichment Analysis of the red module.
The output of MDS demonstrates unsupervised clustering 
of samples, revealing the similarities and dissimilarities 
between them. Figure 1 illustrates distinct groups within 
the bipolar disorder data. Additionally, the figure indicates 
that samples clustered closely together exhibit higher 
similarity, whereas far-apart samples have little or no 
similarity. PlotBCV (Figure 2) depicts the fitting of 
genes with varying expression levels to the model. BCV, 
an abbreviation for biological coefficients of variance, 
represents the actual variation between samples. When 
the model fits accurately, the distribution of tagwise 
(represented by black dots) will merge with the trend 
curve (shown in blue). Voom, an abbreviation for Variance 
modeling at the observation level, tackles the issue of 
representing discreteness and variability in RNA-Seq 
data, as shown in Figure 3. It transforms discrete data 
into continuous data, enabling statistical and differential 
expression analyses. By exploiting the diversity within 
gene count data, voom estimates the relationship between 
mean and variance for each gene, reshaping the count 
data to fit a normal distribution(Law, Chen, Shi, & 
Smyth, 2014). This alteration facilitates the employment 
of linear models for examining differential expression 
and conducting hypothesis testing. Figure 4 presents 
the comparison results of different analysis packages. 
It reveals variations among these analysis methods, 
albeit not substantial. Table 1 presents the findings of 
the differential expression analysis. The results obtained 
from the three differential expression analysis packages 
demonstrate a similar trend. The table displays the top 
15 genes that are the most likely differential genes. The 
provided images exhibit the outcomes of WGCNA and 
GO ontology enrichment analysis. Figure 5 illustrates 
the results of gene cluster analysis through a dendrogram 

depicting clusters. Initially, the co-expression correlation 
coefficient is computed based on the measured levels of 
gene expression. Subsequently, genes are organized into 
clusters, and a gene tree is formulated utilizing Euclidean 
distance. The gene tree undergoes pruning using dynamic 
shearing, ultimately yielding gene modules. This strategy 
facilitates the analysis of a reduced number of gene 
modules rather than a vast number of individual genes. 
The cluster dendrogram’s lower segment signifies each 
module’s designated color. Following this, GO enrichment 
analysis is performed on each module to attain further 
insights into gene functionalities, as shown in Figure 6.
2. GBM results:

Figure 7. Plot MDS presents the grouping of 
GBM samples.
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Figure 8. The plotBCV function is utilized to 
visualize fitting a gradient boosting machine 

(GBM) sample to the model, considering 

various expression levels.

Figure 9. Variance modeling at the 
observational level.

Table 2. Top 15 genes from the analysis results of the three differential expression analysis 
packages for GBM samples.

limma_logFC adj. p edgeR_logFC FDR DESeq2_logFC padj

ENSG00000266489.3 -6.561120177 3.04E-37 -6.34851552 5.87E-16 -6.619032444 0.000119

ENSG00000285883.1 -5.857001039 3.25E-34 -6.02868803 3.13E-24 -6.354909923 3.86E-07

ENSG00000198883.12 -6.829918548 3.99E-33 -5.75780147 9.02E-38 -5.882468697 4.53E-11

ENSG00000233123.1 -7.607911803 3.99E-33 -6.75819341 9.92E-20 -6.880423218 2.97E-05

ENSG00000225110.3 -7.618416071 1.25E-31 -5.78979128 8.01E-23 -5.912617423 6.52E-07

ENSG00000204933.3 -5.369981578 1.25E-31 -5.51866413 9.27E-16 -5.842939527 7.41E-05

ENSG00000160396.9 -5.874017289 1.86E-31 -5.15703605 5.17E-38 -5.279541246 2.58E-12

ENSG00000177570.15 -4.519480933 2.24E-31 -4.21829844 4.43E-47 -4.341222509 1.67E-18

ENSG00000107864.15 -3.81344377 4.56E-31 -3.70115119 3.02E-47 -3.828007686 3.16E-21

ENSG00000196972.9 -4.208800211 1.80E-30 -4.05257957 7.09E-45 -4.179960574 2.09E-18

ENSG00000113319.13 -4.139011536 2.87E-30 -3.8787623 1.12E-43 -4.000206055 2.61E-18

ENSG00000033122.21 -5.050851471 5.06E-30 -4.51434709 1.12E-38 -4.639514817 3.23E-14

ENSG00000198785.7 -4.894709344 8.49E-30 -4.5603169 1.08E-38 -4.677548486 4.95E-14

ENSG00000144550.13 -4.563484946 1.43E-29 -4.39112197 8.86E-44 -4.519993664 9.53E-17
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Figure 10. Cluster dendrogram of GBM brain expression presents the relationship between 
different genes. Close-related genes are clustered into one group where each color represents a 

group.

Figure 11. Gene Ontology Enrichment Analysis of the pink module.
The output presents the results of the differential 
expression analysis, WGCNA, and GO enrichment 
analysis of GBM data. Figures 7, 8, and 9 display 
MDS, plotBCV, and voom plots, respectively. These 
figures indicate that the GBM data exhibits grouping 
tendencies. Figure 7 illustrates that the majority of 
samples are clustered together. In Figure 9, most of the 
data is concentrated around the red line, while the rest 
is scattered. Table 2 lists the top 15 genes likely to be 
differential genes. Figure 10 presents the outcome of 
the Weighted Gene Co-expression Network Analysis 

(WGCNA). The clustering dendrogram illustrates the 
relationship between genes and assigns genes with high 
correlation and weight to a specific module. Each module 
is represented by a different color, indicating that genes 
within a module have a stronger association with each 
other. Then, by performing a go enrichment analysis on 
the pink module, we can know what the function of each 
gene is (see Figure 11).

Discussion
By analyzing the results of the differential expression 
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analysis of BP and GBM, we can observe that both the 
BP and GBM data are available. Figure 1 demonstrates 
clear groupings in the BP data, distinguishing between 
controls and BP patients. Furthermore, it reveals that the 
clustered data exhibit high similarity. Figure 2 (plotBCV) 
is primarily used to assess the gene expression stability 
and the data quality in these samples. The plot indicates 
that the BCV value is small, indicating relatively stable 
gene expression among these samples and ensuring high-
quality and reliable data. Similarly, the same principles 
apply to GBM data samples. These samples are grouped 
and have a higher quality compared to other data. They 
exhibit greater consistency and contain reliable rows.
In the outcomes of both GO enrichment analyses for 
BP and GBM, we notice the existence of GO:0033365. 
This specific term denotes the process of protein 
localization to organelle, which mainly regulates the 
arrangement of proteins within cells. The subcellular 
localization of proteins holds immense importance as it 
dictates their functionality and provides a physiological 
framework(Hung & Link, 2011).  Faulty protein 
subcellular localization is associated with various 
diseases. Genetic mutations and abnormal expression of 
cargo proteins or transport receptors may cause deviations 
in protein localization, eventually resulting in human 
disorders(Hung & Link, 2011).
Another feature that BP and GBM share is their organelle 
localization (GO: 0051640), which is the same as 
saying that their proteins are localized in organelles. 
It is necessary for organelles’ proper functioning and 
continued existence that proteins are positioned correctly 
within them. When proteins enter organelles to which 
they do not belong, they have the potential to interfere 
with the function of other proteins, which could ultimately 
result in the death of the cell. Additionally, improper 
localization of proteins can affect signaling pathways, 
leading to inconsistencies in signaling and disrupting the 
communication that occurs within cells.
The maturation of proteins is the last common genetic 
trait, referred to as GO:0051604 in the gene ontology. 
Protein maturation is extremely important to proteins’ 
functioning, regulation, and overall health. It is the process 
by which a protein moves from a synthetic state to a 
functional one, where it can exert its biological functions. 
It is referred to as post-translational modification. This 
process involves folding, modifying, and activating the 
protein to ensure that it can properly carry out the function 

for which it was designed(Saraogi & Shan, 2014).
All of the genes that we have discussed above are 
connected to the malfunctioning of protein function. I 
hypothesize that these genes could be singled out for 
treatment in the case of BP or GBM. It will be vital in the 
creation of new drugs and research into diseases to pay 
attention to these genes in the future. This will allow for 
the prevention of protein function failure or mutation, 
which has the potential to lead to the treatment of a wide 
variety of human disorders.
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