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Abstract:
Brain-computer interfaces (BCIs) are one of the key research topics today, particularly important in the field of 
neuroscience, and researchers have found that BCIs can be applied not only to stroke or paralyzed patients to allow them 
to manipulate external devices through brain activity but also to the more abstract field of decision making. Currently, 
brain-computer interfaces are helpful in decision-making, mainly by improving various algorithms or applying strategies 
to improve the correctness of decisions. This would certainly help to address the uncertainties or major mistakes that 
occur when people are faced with the choices they make in their daily lives. However, there is a lack of a systematic 
understanding of the mechanisms behind them and the advantages and disadvantages of various approaches. The main 
focus of this review is to introduce the basic workflow of BCIs as well as several approaches that have been used in 
recent years to help improve decision-making (e.g., meta-learning approaches based on transfer learning, collaborative 
brain-computer interfaces, etc.). The aim is to understand the mechanisms behind them and their advantages and 
disadvantages. On this basis, a few suggestions are made in order to identify potential possibilities for further research.
Keywords: Brain-computer interface (BCI); prefrontal cortex; decision-making

1. Introduction
In daily life, people always encounter a variety of choices. 
For example, when there is coffee, tea, and ordinary water 
in front of you, you will be confused about which one to 
choose; when you want to purchase a house or a car, you 
will take into account a number of factors and thus choose 
a more appropriate one. Such people need to make a defi-
nite choice based on a combination of contextual cues and 
prior knowledge to achieve a specific goal; this process 
we can call decision-making [1].
Decision-making is ubiquitous, and there are many fac-
tors that influence decision-making, such as the value of 
the options faced and the consequences of the choices 
made (personal, other people‘s, social). In general, for 
organisms, the motives for making decisions tend to be 
to avoid harm. According to previous findings, one of 
the main brain regions that influence decision-making is 
the prefrontal cortex (PFC), and its different subregions, 
in turn, influence different aspects of decision-making. 
For example, some researchers conducting experiments 
on economic decision-making in rats have found that the 
orbitofrontal cortex (OFC) in the prefrontal lobe plays an 
important role [2]. In addition, this region is also thought 
to be involved in value-based deliberate decision-making, 
with neurons that encode the value of the selected option 
[3]. There are times when more than a few choices are 

faced, such as when faced with multiple choices, and the 
dorsolateral prefrontal cortex (dlPFC) is crucial in filtering 
out information that is irrelevant to decision-making [4]. 
In addition, neuroscientists find that the ventral medial 
prefrontal cortex (vmPFC) is generally engaged in various 
decisions. Still, when faced with more complex environ-
mental decisions, the lateral prefrontal cortex (PFI) may 
be more important [5]. Decision-making is a complex pro-
cess, however, and different subregions of the prefrontal 
cortex often interconnect with other regions to form neu-
ral circuits that guide decisions. For example, when an or-
ganism (primate or human) chooses a favorable outcome 
for itself, there exists a valuation circuit that includes the 
vmPFC, OFC, anterior cingulate cortex (ACC), ventral 
striatum, and the amygdala, among others, which are ac-
tive in the processes involved in the valuation decision, 
and which would also be active in response to different 
forms of reward and punishment [6].
There is a vast body of research on decision-making, 
which we will not go into here. In contrast, people may 
be more concerned with making choices in their lives that 
are more favorable to themselves, especially in the face of 
a complex environment where time is of the essence, en-
suring that their choices are not wrong, assisting people in 
making choices, and so on. The advent of brain-computer 
interfaces seems to open up more possibilities for these is-
sues as neurotechnology advances. The field of brain-com-
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puter interfaces (BCI) encompasses neuroscience, signal 
processing biomedical sensors, and other disciplines. 
Brain-computer interface systems can directly link the 
human brain to the external environment, allowing users 
to manipulate devices through brain activity signals rather 
than nerves or muscles [7]. Traditionally, BCIs are com-
monly used to help injured or impaired patients recover, 
e.g., by helping patients control devices such as prosthetic 
limbs and wheelchairs [8]. As human needs increase, it is 
also used for memory enhancement, error detection, trust 
assessment, and group decision-making [9]. In this paper, 
the author will discuss how BCIs can be utilized in the 
PFC, in what ways they can help decision-making, and 
the neural mechanisms behind them, with the aim of help-
ing human beings live better lives and discover potential 
possibilities.

2. Related Works
2.1 BCI Basic Process
Before we start with the formal content, it is necessary 
to understand some of the basics of BCIs in order to 
understand how BCIs can improve the correctness of de-
cision-making. The concept of BCIs has been proposed 
since the last century through continuous research and de-
velopment of predecessors, gradually moving from theory 
into reality and ultimately being applied in a number of 
fields. According to M.F. Mridha et al [7], the workflow 
of a BCIs can be roughly characterized as signal acqui-
sition, pre-processing, feature extraction, classification, 
controlling the device, and finally feedback evaluation. 
These processes described above and the principal meth-
ods involved therein are illustrated in Figure 1, and the 
particulars will be set forth below. Experts and scholars in 
the field may delineate roughly the same stages, but that 
doesn‘t prevent us from understanding how it works.
BCIs work mainly based on the signals from brain activi-
ty, which can be categorized into different types, the more 
common ones being visual steady-state evoked potentials 
(SSVEP), which are derived from periodic stimuli expe-
rienced by the subject (e.g., flickering images, modulated 
sounds, or vibrations), and P300 evoked potentials, which 
are produced from infrequent visual, auditory, or somato-
sensory inputs to the electroencephalogram (EEG) peak 
potentials, which require the user to make a response to 
a series of random stimuli and also tend to cause user 
fatigue. The acquired signal may not be directly usable 
and is filled with noise caused by various factors, in 
which case it needs to be preprocessed, or as some call 
it, signal enhancement. Commonly used methods include 
independent component analysis (ICA), common average 
reference (CAR), and signal denoising, etc. where signal 

denoising can eliminate sounds or artifacts in the EEG 
signal.
Then, feature extraction work needs to be done on the 
processed signal as a way to reduce the workload and im-
prove efficiency. The EEG-based BCIs is often performed 
the process of feature extraction via three directions: time 
domain, frequency domain, and time-frequency domain. 
In the end, the extracted features should be classified in 
order to send commands to external devices. As the neural 
technology develops, a growing number of BCIs are now 
using neural networks as classifiers, among which convo-
lutional neural networks (CNN) are mainly used for image 
analysis and recognition and visual input processing, in-
cluding convolutional, pooling, and fully-connected layer 
structures. Currently, the choice of classifiers for BCI may 
not be limited to a single one but rather a combination of 
tools to improve efficiency. BCI needs to be adjusted us-
ing algorithms or user feedback.
Some scholars categorize brain-computer interfaces 
according to different classification criteria [7, 10, 11], 
which can be broadly classified as invasive and non-inva-
sive. Invasive brain-computer interfaces with clear signals 
can directly monitor the activity of each neuron. Still, they 
are subject to foreign body reactions and post-surgical 
scarring and are currently only suitable for patients with 
moderate to severe paralysis, for example. There are also 
semi-invasive BCIs, such as cortical electroencephalog-
raphy (ECoG), as well as non-invasive BCIs including 
electroencephalography (EEG), magnetoencephalography 
(MEG), positron emission tomography (PET), function-
al magnetic resonance imaging (FMRI), and functional 
near-infrared spectroscopy (FNIRS), etc., which are used 
in a wide variety of fields with the advantages of low cost 
and portability. Interestingly, Gao et al. further elaborated 
the brain-computer interface (BCI) from an evolutionary 
perspective, including the classical brain-computer inter-
face era, the brain-computer interaction era, and the cur-
rently developing brain-computer intelligence era [12].

2.2 Applications of BCI in Improving Deci-
sion-Making
Brain-computer interfaces seem to be able to combine 
with various fields and have unlimited possibilities, no 
longer limited to the traditional forms. Since humans 
make choices almost all the time in their daily lives, they 
combine the information they already have with various 
conditions to synthesize and ultimately form a decision 
and execute it. If there is a way to help humans make 
better decisions, it will bring a lot of benefits. Current 
research on brain-computer interfaces to improve deci-
sion-making mainly focuses on improving some of the 
corresponding algorithms or decision-making, which in 
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turn improves the accuracy of decision-making. Some 
researchers believe that the metacognitive evaluation of 
decision-making, i.e., confidence, can, to a certain extent, 
respond to the accuracy of decision-making. This measure 
is also considered to be similar to other physiological 
measures, such as reaction time (RT) status [1, 13]. Some 
researchers have also argued that recent machine learn-
ing-based decision decoders and brain-computer interfac-
es for improving decision correctness have also gradually 
utilized neural representations of decision and confidence 
[14].
Christoph Tremmel et al. proposed that meta-learning 
based on transfer learning techniques can improve the 
performance of BCI in decision confidence prediction 
[13]. Based on the previous common practice of predict-
ing decision confidence through EEG, which has certain 
drawbacks such as inaccurate prediction and the possibili-
ty of leading to domain bias problems, since modern BCIs 
are in accordance with machine learning algorithms, there 
may be a mismatch among the training algorithm and the 
new data, which indirectly increases the time of training 
the user prior to the use of the BCI, and to some extent, 
may also lead to the generalization of BCIs. For this, they 
adapted meta-learning by means of a biased regularization 
algorithm, a method that generates predictive algorithms 
from the data of previous testers and then quickly adapts 
the algorithms to the new participants‘ situations. (By 
comparing the meta-learning approach to several other 
methods, including the traditional BCI single-subject 
training method, domain-adversarial neural networks, and 
the transfer learning method of zero-task-like training), 
they found that the meta-learning approach was superior, 
as shown in Table 1.
In addition, SuJin Bak et al. proposed a BCI-based brain 
signal processing method to measure behavior when peo-
ple make decisions such as impulsive spending, aiming to 
reduce ambiguity and guesswork in the data. This study 
utilized functional near-infrared (fNIRS) to detect impul-
sive consumption behavior and observe prefrontal cortex 
activation, providing evidence of a potential biomarker 
that could provide new possibilities for the development 
of BCI [15].
When faced with important decisions, such as the intro-
duction of a policy, the enactment of laws, etc., it is basi-
cally a specialized committee (think of it as a large team) 
that votes or uses other methods of decision-making to 
reduce the risk of avoiding devastating catastrophes due 
to the false sense of confidence of an individual. Davide 
Valeriani et al. present a new perspective on how BCI 
can improve human decision-making. How BCI can im-
prove human decision-making: Their team has proposed 
a multimodal BCI to help humans make big decisions in 

a larger environment [14]. They used EEG or fMRI to 
isolate relevant neural markers (confidence, etc.) and then 
allowed machine learning to decode these neural marker 
features to augment the BCI‘s team decision-making. (By 
comparing the performance of different-sized teams with 
standard majority decision-making or weighted individual 
decision-making) they showed that BCI-assisted team de-
cision-making accuracy is superior (because BCI is able to 
capture the unique neural correlates of confidence). In ad-
dition, during their experiments, they found that the neural 
markers of decision accuracy used were in the SPL and 
visual cortex, relying on parietal-occipital and δ rhythms, 
and frontal-temporal β rhythms. In contrast, the markers 
of subjective confidence were not only in the SPL, but 
also extended to areas such as the middle prefrontal and 
basal ganglia, which could suggest that our next BCI stud-
ies might focus on areas such as the prefrontal and basal 
ganglia. On prefrontal and other regions to explore further 
neural mechanisms.
Not coincidentally, Saugat Bhattacharyya et al. introduced 
collaborative brain-computer interfaces (cBCIs) and 
tested them in two military scenarios (patrol experiment 
and outpost experiment) and found that the interfaces 
significantly improved the efficiency of group-perceived 
decision-making [8]. This collaborative biometric identifi-
cation (cBCIs) can integrate the brain activity of multiple 
users to complete the goal; they developed a hybrid cBCI 
combining the use of neurological, behavioral, and phys-
iological measures to evaluate the objective confidence 
of the users one by one and then finally aggregating the 
contribution of each individual and using his/her confi-
dence as a decision weighting to form the final result of 
the group decision.
Alireza Rouzitalab et al. suggest that the brain processes 
relatively limited information in order to make the most 
appropriate choices. The pathway seems to be that senso-
ry information reaches the posterior parietal cortex (PPC), 
which subsequently transfers the signal to the PFC and 
premotor cortex (PMC), and the processed information is 
then sent to the primary motor cortex (M1) for a response 
[16]. Unfortunately, however, little has been seen so far on 
the neural mechanisms by which the interbrain interface 
actually acts on the prefrontal cortex to modulate and thus 
influence decision-making. An approximate brain-com-
puter interface working mind map is shown in Figure 1.

3. Discussion
Several BCI approaches mentioned in this article to help 
improve decision-making include meta-learning (new 
transfer learning methods), collaborative brain-comput-
er interfaces, brain-computer interfaces, and methods 
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that utilize functional near-infrared (NIR) detection and 
analysis to improve the accuracy of various forms of de-
cision-making by improving the BCI‘s workflow (e.g., by 
proposing or refining new algorithms or strategies or by 
searching for potential neural markers of subjective sen-
sations, etc.). To some extent, their methods can comple-
ment the shortcomings of existing algorithms or research 
strategies and provide new reference directions. However, 
the target objects compared in the above studies seem to 
be a bit limited, and further comparisons with existing 
mainstream methods are needed. In addition, the above 
study was only conducted in a small number of healthy 
people. It did not take into account the existence of oth-
er populations in the social structure (e.g., people with 
disabilities, people with mental disorders, people with 
atresia syndrome, and healthy people working in various 
professions etc.) The scope of the experiments needs to be 
further expanded to validate the results.
According to Gangopadhyay P et al. [17], they have 
broadly categorized decision-making in rodents, primates, 
and humans regarding social dimensions into three phases 
(social cognition; social learning, evaluation, and reward; 

and social action or response), and they explored each of 
their three phases, elaborating on the role that the prefron-
tal cortex (PFC) (including its various subregions)-amyg-
dala neural circuit plays a role in decision making.

Fig. 1 Approximate brain-computer interface 
working mind map (Photo credit: Original)

Table 1. Summary of relevant research on brain-computer interfaces to help improve decision-
making.

Strategies ADVANTAGES brief introduction

Transfer learning 
techniques 

according to 
meta-learning[13]

lSequential processing of data (e.g., using source 
and target data) and no need to keep the training set 
in memory (low memory footprint as well as low 

complexity)
lIntegrates the advantages of mainstream single-

subject methods with the versatility of multi-subject 
methods without adding to their disadvantages

lImprove performance with less data
lVarying degrees of participant performance 

improvement
lMeta-learning algorithms improve incrementally 

with more and more available source data
lMeta-learning produces confidence predictions 
that better regulate the correctness of decisions

Meta-learning is based on two previous phases 
of meta-training (iteratively training BCIs 

with prior participant data to obtain domain-
invariant features)

And fine-tuning (fast fine-tuning of BCI with 
data from new participants).

A validation fine-tuning step has also been 
added.

Multimodal 
collaborative 

brain-computer 
interfaces[14]

lEstimate the possibility of a correct decision 
from neural signals, thereby notably improving 
the accuracy of the team’s decision-making in 

identifying hazardous areas.
lImprove decision-making in pandemic scenarios.

Separate decision-related neural markers 
of confidence and trust by EEG/functional 
magnetic resonance imaging (EEG/fMRI) 

and let machine learning decode these neural 
markers to enhance team decision-making 

correctness.
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Collaborative 
Brain-Computer 

Interfaces 
(cBCIs)[8]

lMake roughly reliable decisions, and the longer 
you wait, the better the results will be

lCan meet the challenges of time progress and 
decision-making complexity

It combines behavioral, physiological, and 
neurological data and utilizes event-related 
potentials (ERPs) that are triggered by brain 

activity.
When a potential threat is present, provides 
collective decision-making at any time after 

team members have voted.

Functional 
near-infrared 

(fNIRS) based 
brain-computer 
interfaces[15]

lReducing bias initiated by conscious thought is 
evaluated through self-reports and ensures the 

ecological validity of people’s behavior as well.
lThe emergence of biomarkers for fNIRS increases 

the potential for impulsive buying detection and 
can improve the prediction of human buying 

decisions.

Detection of prefrontal activation during 
impulse consumption by functional near-

infrared (fNIRS) provides potential 
biomarkers.

Moreover, in a study by Zoh Y, et al. [6], it was also 
mentioned that the brain regions designed for these deci-
sion-related activities, including motivation, representa-
tion, valuation to action selection, were found to include 
vmPFC, OFC, ACC as well as the ventral striatum and 
amygdala in a study on primates and humans. These 
findings seem to suggest that decision-making is a very 
complex process and that the generation of a decision is 
not confined to a single but multiple brain regions acting 
to form potential neural loops, which may be particularly 
important for future research. It seems that brain-comput-
er interfaces can improve decision-making not only by 
improving algorithms or applying strategies to improve 
decision-making accuracy but also by intervening in a 
particular brain region or neural circuit to assist in deci-
sion-making.
Based on Collins AGE et al.‘s study [18], it seems that it 
can shed light on the next BCI research on decision-mak-
ing directions, such as considering the influence of mul-
tiple systems on each other and exploring the situation 
where an individual decides with respect to the judgmen-
tal valuation of the outcome (i.e., a person may consider 
whether or not this should be done, and what the outcome 
will be if it is done, either through intrinsic or extrinsic 
factors), and so on. In addition, Liu Y et al. also studied 
the research on environmental control of human and re-
habilitation hospitals [19], which also provides potential 
possibilities for the next brain-computer interface; imag-
ine when the user is in the external environment to see 
a certain object in mind flashed a certain idea, there will 
be a list of options will be popped up in front of the eyes, 
and only the brain‘s ideas can be made to make a choice 
(the user to do certain actions or the selected object to 
make some kind of change to fit the user‘s ideas), which 
will greatly improve the efficiency of life. Indeed, studies 
with primates and rodents are not unique. Although their 

decision-making styles and associated brain regions are 
different from those of humans, they can provide gener-
al ideas for subsequent research. Balewski ZZ et al. [3] 
studied decision-making in rodents and primates, and this 
may provide insights, but of course, obedience takes a lot 
of time to train, and the associated mental representations 
are not directly available, making it difficult to validate 
the results another great challenge. Training and the fact 
that relevant mental representations are not directly avail-
able to validate the results is another great challenge. In 
addition, physiological processes related to decision-mak-
ing may be regulated by a variety of substances, such 
as the neuropeptide oxytocin (OT) [17]. Suppose future 
brain-computer interfaces are able to decode the release of 
related hormones or the choice of the pathway of action. 
In that case, they may also indirectly play a role in deci-
sion-making.

4. Conclusion
This article introduces the basics of the workflow of 
brain-computer interfaces (BCIs). It describes some of the 
research on the role of BCIs in decision-making, with the 
aim of helping readers understand the ways in which BCIs 
can intervene today (either through BCIs‘ algorithmic 
improvements or through the joint use of multiple appli-
cations for decision-making, etc.) to assist human decision 
making (by improving confidence in decision making and 
thus increasing the rate of decision making correctness). 
Although this article does not go further to compare the 
effects of the various approaches horizontally, probably 
due to the fact that there are too many differences in the 
studies to be directly comparable, and there is no data 
available to validate or further explore the mechanisms 
of BCIs for improving decision making. However, some 
potential research directions of brain-computer interfaces 
on decision-making (e.g., the influence of multiple sys-
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tems in brain regions on each other or some new kind of 
bioinformation decoding, as well as possible human-envi-
ronment interaction decision-making, etc.) can be identi-
fied through this paper with the aim to better carry out the 
subsequent research.
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