
Dean&Francis

A Comparative Study of Different Autoencoders Architectures

Zelin Zhu

Abstract:
The paper is aimed to present a comparative study of different autoencoder architectures. The introduction section
provides the background of autoencoder architectures and display the motivation for conducting this study.
In the second part, I would like to systematically introduce the method I used to design and implement the experiment.
This section begins with data preparation, where I describe the procedures for data acquisition and normalization
to ensure the dataset’s suitability for analysis. After that, I have roughly described the implement logics for each
autoencoder architecture. At last, the visualization techniques are used to display the results and it can help to emphasize
how these graphical representations contribute to understanding the experiment’s outcomes.
In the last part, I would like to make some deepen analysis on these three autoencoder types based on the images we got
on the methodology part. After that, I will discuss the advantages and disadvantages of each autoencoders, which can
help us choose the most reliable autoencoder according to different dataset and conditions.
Keywords: autoencoder architectures, dataset, machine learning, visual comparison

Introduction
Background of Autoencoder Architectures
Autoencoders are neural network-based models based on
unsupervised learning method that are used to find the
underlying relationship between data and display data in
a smaller dimension. An Autoencoder is mainly including
three parts which is Encoder, Bottleneck and Decoder.
Encoder is used to compresses the input data to a lower
dimensional encoding and bottleneck layer is the central
part of the whole autoencoder process representing the
core features of the input, while the decoder reconstructs
the original input from this compressed representation.
One of the key advantages of autoencoder is that it is ef-
fective in reducing the dimensionality of data. It is useful
for facing a large amount of data and reduce it can im-
prove the efficiency and lower the cost in computing. For
another advantage, autoencoder can also be trained to re-
construct more cleaner data from noisy input. Through the
process of denoising data, autoencoders can significantly
enhance the robustness of models against the noisy input.
The main architectures of autoencoder
There are three Autoencoder architectures will be dis-
cussed in this paper, which is Standard Autoencoder,
Denoising Autoencoder, Sparse Autoencoder. These Au-

toencoder architectures has their corresponding use cases.
Each architecture serves specific rules within different
fields, showcasing their versatility and effectiveness for
tailored applications.

Figure 1: Standard Autoencoder Architecture
Standard Autoencoder(Figure 1) is the simplest architec-
ture applied on the less complexity datasets and its main
purpose is reducing the dimensionality and extract some
features in relatively smaller datasets. The structure of
Standard Autoencoder is simple, and its
straightforward structure is useful for further exploration
on more complex autoencoder models.

ISSN 2959-6157�

1

Dean&Francis

Figure 2: Denoising Autoencoder Architecture[2]
The basic principle of Denoising Autoencoder (Figure 2)
is adding some noise to the input to corrupt data and mask
some of the value and then Denoising Autoencoders learn
to reconstruct the original input corrupted by noise. They
are renowned for their ability to enhance the robustness
and generalization of features learned. This property is
effective in managing real-world data which contains dif-
ferent kinds of noises. Especially, Denoising Autoencod-
ers is useful in images denoising tasks where the goal is to
remove noise from images.

Figure 3: Sparse Autoencoder Architecture[3]
Sparse Autoencoder is also an autoencoder designed
based on neural network. The purpose of Sparse Autoen-
coder is reconstructing the input data from learned Sparse
representation. This type of autoencoder typically con-
tains more hidden units than the input but only a few are
allowed to be active at once[1]. This property is named
the sparsity of network[1]. Compared with some other
traditional autoencoder, the sparse autoencoder introduce
a sparsity penalty term to induce the activation of hid-
den layer neurons to be sparser. Sparse autoencoders can
capture the important features of the input data better by
enforcing sparse activations of the hidden layer neurons.

Motivation of Conducting this Study
Recently, Autoencoders have acquired significant attention

in the field of machine learning because of their ability to
learn efficient codlings of data in an unsupervised way.
These architectures are useful in various applications in-
cluding dimensionality reduction, data denoising, improve
the calculation efficiency. Autoencoders play an important
role in the theoretically understanding and practical im-
plementations in machine learning.
The main reason for doing the experiment arises from the
need to deeply understand and evaluate the performance
of different autoencoder architectures. There is existing
various Autoencoder Architectures ranking from basic
model like standard autoencoder architecture to more
complex model like sparse or denoising Autoencoders
Architectures. The motivation of conducting this study is
used to compare these architectures and identifying the
strengths and weaknesses of each architecture. In this way,
we can choose the most suitable model for specific tasks.
This study is aimed to contribute to the field by offering
insights into the practical applications and theoretical
underpinnings of various autoencoder model and the
ultimately goal is to foster a deeper understanding of au-
toencoders and to advance them in solving a real-world
problem effectively.

Methodology
Methodology for Standard Autoencoder
In the study of standard autoencoder, we explored the fea-
ture representations of the Fashion MINIST dataset using
an autoencoder. The dataset consists of 60000 training
images and 10000 test images, each of 28*28 pixels, rep-
resenting 10 different categories of apparel. Initially, the
image data was normalized to [0, 1] range and reshaped
into 784-dimensional vectors[4]. The design of the auto-
encoder included an input layer, an encoding layer, and a
decoding layer, with the encoding layer compressing the
input into a two-dimensional representation. I have em-
ployed the ‘relu’ activation function and ‘adam’ optimiz-
er[4], with mean squared error as the loss function. The

2

Dean&Francis

model was trained over 20 epochs with a batch size of 64.
After training, the encoded test set was visualized using
scatter plots to illustrate the distribution in the low-di-

mensional feature space. Additionally, we compared the
original images with their reconstructions by the decoder
to access the quality of the model’s reconstruction.

Figure 5: The Scatter Plot of the Standard Autoencoder Architecture
Figure5 illustrates the two-dimensional feature represen-
tation of the Faison MINIST test dataset obtained through
our autoencoder model. Each point on the plot corre-
sponds to an individual image, with different colors indi-
cating the image’s category, numbered from 0 to 9[4]. The
plot reveals the distribution of different categories in this

reduced feature space. Although some categories seem to
be cluster, there is obvious overlap between most of these
different categories. This overlap suggests a certain level
of information loss inherent in compressing complex data
into two dimensions. It can also imply the visual similari-
ties between categories presented in the original dataset.

Figure 6: The Different between the original image and reconstructed image
Figure 6 displayed a detailed visual comparison between
original and reconstructed images from the Fashion
MNIST dataset using the simplest autoencoder model.
The upper row of the figures displays a selection of ten
original images. Each images represent different apparel
categories including footwear, outerwear, and accessories.
The autoencoder displays the corresponding reconstructed
images below these original images.
The comparison reveals that the simple autoencoder can
generally maintain the basic outlines and structural ele-
ments of the images. However, there is a noticeable degra-
dation in the finer details and textures. The effect is partic-
ularly pronounced in images that originally had complex
patterns or multiple colors, where the reconstructed im-

ages appear to be significantly blurred and details are less
distinct.
The different impact of the reconstruction process across
various types of apparel suggests that the autoencoder per-
forms better with images having distinct and simple geo-
metrical shapes. For example, the outlines of shoes and
bags are relatively well-preserved, indicating the model’s
efficiency in capturing prominent features. Conversely,
there is a greater challenge in some complex items such as
checked shirts and detailed dresses because their intricate
patterns and subtle color variations are not being as clear-
ly replicated.
Overall, these observations are critical for accessing the
capabilities and limitations of our autoencoder model,

3

Dean&Francis

especially in applications involving image compression or
dimensionality reduction. This phenomenon indicates that
there is still existing the need for further refinements in
the model architecture to enhance its ability to reconstruct
more complex images faithfully.
Methodology for Denoising Autoencoder
In the Denoising Autoencoder experiment, we utilized
an autoencoder model to explore feature representations
within the Fashion MINIST dataset and assessed the
model’s performance in handling noisy data. The dataset
used in this experiment is the same to the study of simple
autoencoder, which contains 60000 training images and
10000 test images, each with a dimension of 28*28 pixels,
representing ten different categories of apparel. Initially,
the image data was normalized to the [0,1] range and then

reshape it into 784 dimensional vectors[4]. Subsequently,
through adding some noise from a normal distribution
(noise factor of 0.5), we simulated potential data quality
issues encountered in real-world applications.
The architecture of the autoencoder includes multiple
encoding and decoding layers, with the encoding layers
gradually reducing the dimensionality to 2 dimensions,
and the decoding layers progressively restoring it back to
the original 784 dimensions. We used the ‘relu’ activation
function for nonlinear transformations, and the final layer
employs ‘tanh’ to match the normalization range of the
data[4]. The model was trained using the ‘adam’ optimiz-
er[4], with mean squared error as the loss function, over a
training period of 20 cycles.

Figure 7: After adding some Noise to the Autoencoder
Figure 7 illustrates the impact of noise on images from
Fashion MINIST dataset. The upper row of the figure dis-
plays a selection of original images, showcasing various
apparel items in clean form. The lower row demonstrates
the same images after the introduction of Gaussian noise,
providing a clear visualization of how noise can degrade
image quality.
Detailed Analysis
First, the first row in figure 7 is the original images from
the Fashion MINIST dataset, representing different cate-
gories of apparel such as shoes, tops, and pants, each de-
picted in a
28*28-pixel resolution. These images serve as a baseline
for accessing the impact of noise on visual clarity.
The second row presents images that have been subjected
to Gaussian noise. This manipulation simulates potential

real-world interferences, illustrating significant visual deg-
radation, particularly in terms of detail and texture pres-
ervation. In the noise-added images, the noise is mainly
manifested as random black and white speckles that cause
interference in the details and structure of the image. The
effect of noise is especially noticeable in areas with more
detail such as the texture and edges of the garment.
The reason why we add some noise to the image input is
that we hope to increase robustness of the autoencoder. In
the real world, data is often affected by noise for a variety
of reasons. For example, images may be corrupted during
capture, transmission, or storage. By adding noise to the
training process, these real-world situations can be sim-
ulated, providing the model with a training environment
that is closer to reality.

Figure 8: Decoding the Noised Images
The images in the top row have been intentionally degrad-
ed with Gaussian noise to simulate typical real-world dis-
turbances that images might suffer during acquisition or
transmission. The added noise blurs details and alters the

texture and edges of fashion items, making them difficult
to recognize.
The bottom row shows the result of the denoising self-en-
coder’s processing. It is clear that the autoencoder re-

4

Dean&Francis

moves a great deal of noise effectively, restoring clarity
and detail to the image. While some slight traces of noise
may still be present, key features such as contours, shapes
and major details are well preserved.
And then, we can make a denoising quality assessment.
The denoising quality was assessed by comparing the
noisy images with their reconstructed versions. The
comparison results show that the self-encoder is able to
recover most of the original content, demonstrating the
efficiency of the model in filtering noise while retaining
key features. This is particular evident in the recovery of
details and the maintenance of overall structure.

Figure 9: The Scatter Plot of the denoising
Autoencoder Architecture

Figure 9 displays how the denoising autoencoder com-
presses the high-dimensional data (784 dimensions) into
a two-dimensional space. This compression can help us to
visualize the underlying structure and clustering behavior
of different apparel types in a more easily interpretable
form. Different colors in the scatter plot represent different
categories of the Fashion MNIST dataset. For instance,
similar types of apparel may cluster together, indicating
that the autoencoder preserves some semantic meaning of
the original data after encoding. The distances between
clusters can provide insights into how distinctly the auto-
encoder has learned to represent different categories. Clos-
er clusters suggest categories with visually similar charac-
teristics, whereas widely separated clusters could indicate
distinct apparel types. The denoising quality is evaluated
by comparing the noisy images with their reconstructed
versions. The comparison results show that the autoencod-
er is able to recover most of the original content, demon-
strating the efficiency of the model in filtering noise while
preserving key image features. This is particularly evident
in the recovery of details and the maintenance of the over-
all structure.
Methodology for Sparse Autoencoder

In the sparse autoencoder development consisting of an
encoder and a decoder. The encoder is composed of three
fully connected layers with decreased neurons respective-
ly, where the final layer compresses the data into a two-di-
mensional representation. Each layer employs the relu ac-
tivation function and the first encoding layer includes L1
regularization to enhance the sparsity of the model[4]. The
decoder mirrors the encoder’s architecture, culminating
in an output layer that utilizes the tanh activation function
to reconstruct the original input data. The training of the
autoencoder was performed using the Adam optimizer
and MSE loss function. The model processed several
epochs of training on the entire dataset with batch sizes
of 64 samples. Additionally, we shuffled the data during
training to decrease some related dependencies that could
potentially influence the model’s performance. To access
the model’s performance and the learned feature represen-
tations, we used two visualization techniques: Firstly, we
encoded samples from the test set using the trained encod-
er and displayed the two-dimensional encoded results in
a scatter plot to observe the distribution of different digit
categories within the encoded space. Secondly, we select-
ed several test images along with their reconstructions
made by autoencoder. It provides a direct measure of the
model’s reconstruction quality through visually compar-
ing and evaluating the similarity between the original and
reconstruction images.

Figure 10: The Scatter Plot of Sparse
Autoencoder

The images (Figure 10) represent a scatter plot of the
two-dimensional encoded representations of images from
the fashion minist dataset, which is achieved through a
trained sparse autoencoder. Each point in the scatter plot
corresponds to an individual image, and the color coding
indicates the type of apparel represented by each image,
as designated by the dataset labels from 0 to 9. This visu-
alization not only demonstrates the clustering ability of

5

Dean&Francis

the self-encoder, but also illustrates how well the coded
features discriminate between different apparel types.
Distinct clusters suggest that the autoencoder effectively
captures and separates the intrinsic features of different
apparel types in the dataset. For example, denser cluster-
ing may indicate apparel types with more consistent and
distinctive characteristics, while more dispersed clustering

may reflect greater variability within categories. Rela-
tive positions and distances between clusters can provide
valuable insights into the relationships and similarities
between different apparel categories. Categories that are
positioned closer together might share visual or stylistic
similarities that the autoencoder has learned to encode
similarly.

Figure 11: The Differences between Original Image and Reconstructed Image
After observing the Figure 11, we can see that the image
contains two rows of visual displays of fashion items
from the fashion minist dataset. The top row contains the
original image, and the bottom row shows the reconstruct-
ed image after processing by sparse autoencoder. Each
column corresponds to a specific item and each column
demonstrates the effect of the autoencoder in recovering
the original image after the encoding and decoding pro-
cess.
Although the reconstructed images are slightly blurred
in the bottom row, the general shape and key structural
elements of the clothing and accessories are preserved.
This suggests that the autoencoder, even after significant
dimensionality reduction, is still able to capture the key
visual features needed to recognize and differentiate be-
tween different fashion items.
There are also existing some visible differences in texture
and detail definition between the detail and reconstructed
images. These differences highlight areas where the model
may have lost information, particularly in finer detail and
edge definition. However, the overall integrity of the item
shapes was well preserved, indicating that the main archi-
tectural features were effectively encoded and decoded.
Deepen Analysis for the Different Autoencoder Architec-
ture and Get a Conclusion
In this analysis, we compare three different types of auto-
encoders: standard autoencoder, denoising autoencoder,
sparse autoencoder. In the following, I will compare these
three autoencoders based on the code and imaged dis-
played above and discuss their applications, strengths and
weaknesses, and their respective characteristics.
First, Standard Autoencoder are often utilized for dimen-
sionality reduction and feature learning in an unsuper-
vised learning condition. Secondly, these models learn
compressed representations of data which can be useful

for tasks like weight initialization and noise reduction.
Their straightforward architecture is easy to implement
and train, which is appropriate to revealing the underlying
structure of data. However, they may struggle with noisy
data and can’t capture complex features as effectively as
more specialized models.
Denoising Autoencoder excel in applications where data
integrity is compromised by noise. These models enhance
their generalization by training to recover the original
data from noisy inputs. In this way, they are valuable in
real-world applications because noise is prevalent in re-
al-world. However, their training process is more complex
and sensitive to the nature of noise, so it requires more
higher precision to make sure optimal performance.
Sparse Autoencoder aims to enforce sparsity in data repre-
sentations, making them suitable for tasks that require fea-
ture selection and compression sensing. The incorporation
of sparsity-inducing regularizations like L1 encourages
the model to focus on the most significant features, there-
by improving interpretability. While they provide robust
feature representations, tuning their regularization param-
eters is critical and challenging.
The images provided serve as visual evidence of the func-
tionality of the respective encoders. Images processed
through the Standard Autoencoder show basic reconstruc-
tion capabilities but may lack detail accuracy. In contrast,
the denoising autoencoder effectively reduces noise as
evidenced by the clear image, which shows significant im-
provement over the original image. Finally, although there
is a significant data compression, the sparse autoencoder
maintains key visual information, which demonstrates the
effectiveness of its sparse constraints.
In conclusion, the choice between these autoencoder types
should be guided by specific application needs and data
characteristic.

6

Dean&Francis

References
‌[1]“ML | Auto-Encoders,” GeeksforGeeks, Jun. 21, 2019. https://
www.geeksforgeeks.org/auto-encoders/
[2]from lecture of Lihong Yi
[3] A. Ng, “CS294A Lecture notes Sparse autoencoder.”
Av a i l a b l e : h t t p s : / / w e b . s t a n f o r d . e d u / c l a s s / c s 2 9 4 a /

sparseAutoencoder.pdf
[4]Nana0606, “autoencoder/autoencoder at master · Nana0606/
autoencoder,” GitHub, 2018. https://github.com/Nana0606/
autoencoder/tree/master/autoencoder.

7

