ISSN 2959-6157

A Study on Removal of Heavy Metal Ions by MgFe-Layered Double Hydroxides

Zian Song

Abstract:

Heavy metal pollution has posed great threats to the ecological environment, food security and human health. To date, various approaches have been explored, among which mineralization of heavy metals via layered double hydroxides (LDHs) are reported as a promising way to solve the addressed issue. In line with this, the current study attempts to the fabrication of two typical MgFe-LDHs containing different intercalated anions (denoted as MgFe-CO₃ and MgFe-NO₃) for mineralization of Cd^{2+} . In the experiments, the as-prepared MgFe-NO₃ exhibited a high maximum adsorption capacity of 444.44 mg/g, which was 2.82 times higher than that of the contrast sample MgFe-CO₃ (157.48 mg/g). Such difference in adsorption capacity can be attributed to the different mineralization mechanism: For MgFe-NO₃, the mineralization process was dominated by isomorphous substitution and the CdFe-LDH was the main product, while for MgFe-CO₃, the formation of CdCO₃ can be observed. This work paves a way in treating Cd²⁺ by MgFe-NO₃ through super-stable mineralization and its further application in the removal of co-existent Cd²⁺ and AsO₄³⁻ ions can be expected.

Keywords: heavy metal, mineralization, hydroxides, absorption capacity, isomorphous substitution

Introduction

1.1 The situation of heavy metal pollution in the world

Since the 20th century, with the rapid development of social economy, the world's ecological environment is facing increasing challenges (Hou et al., 2020). The combustion of fossil fuels, the mining of minerals and the use of pesticides and fertilizers containing harmful heavy metals have caused heavy metal pollution, which severely threatens plants, animals and microorganism and results in deterioration of ecosystem. Among all types of heavy metal pollution, soil pollution has raised particular attention worldwide because it has led to serious food security problems or even ecological disasters (Borrelli et al., 2013). According to the 'Global Soil Pollution Assessment' raised by the Food and Agriculture Organization of the United Nations (FAO), about 33% of the soils in the world are currently degraded due to heavy metal pollution (Liu et al., 2023). In 2018, Pérez et al. express their concern that 2.8 million square kilometers of soil in EU are potentially contaminated (Pérez & Eugenio, 2018).

1.2 The situation of heavy metal pollution in China

In China, the heavy metal pollution is also a prominent environmental problem. According to national soil pollution investigation issued by the Ministry of Environmental Protection of China, 16.1% of the soil contains pollutants above average, and 82.8% of all pollutants come from heavy metals. This results in 12 million tons of contaminated grains and a direct loss of 20 billion yuan per year. Among all heavy metals, the Cd²⁺ contamination was the most serious, which accounts for 7% of total heavy metal pollutions (Yang et al., 2018). Hence, it is extremely urgent to find effective treatment of heavy metals in soil. In this regard, chemists have explored various approaches to remove heavy metals from the soil including elution, electrochemistry, phytoremediation, mineralization and etc. Existing studies show that elution, electrochemistry and phytoremediation may have such problems as high cost, long treatment cycle, harmful for soil structure and second-time contamination. Mineralization turned out to be a more reliable, safer and less expensive method (Sun et al., 2023). Based on these reported findings, the current study attempts to investigate the treatment of heavy metals with a focus on Cd²⁺ by applying mineralization methods.

1.3 The purpose of this study

Literature shows that layered double hydroxides (LDHs) have been demonstrated to be able to form very low K_{sp} , showing great potential as a class of mineralizer. In line with this, the current study attempts to carry out experiments to remove Cd^{2+} in soil by adopting LDHs. The

purpose of the study is threefold. Firstly, it intends to understand the mineralization mechanism of LDHs-based mineralizers by using different intercalated anions of Mg-Fe-CO₃ and MgFe-NO₃. Secondly, it aims to optimize the mineralization conditions including the maximum adsorption capacity towards Cd²⁺, and to investigate the thermodynamics and kinetics of mineralization process. Thirdly, it will explore the preliminary super-mineralization of LDHs in Cd²⁺-polluted soil.

1.4 Outline of the paper

In this paper, the first chapter introduces the severe situation of heavy metal pollution in the world and in China in particular as well as the purpose of this study. In the second chapter, relevant literature is reviewed. In Chapter Three, experiments including materials, synthesis, characterization and performance investigation are presented in detail. Chapter Four gives an in-depth account of the results and discussions based on the experimental data. In the concluding chapter, findings are summarized and future study is pointed out.

LITERATURE REVIEW

2.1 Methods of heavy metal pollution treatment

Currently, a wide variety of heavy metal pollution treatment technologies have emerged, which provides solutions from multiple angles to solve the heavy metal pollution (Xu et al., 2019). However, considering the efficiency, operability, cost or energy consumption of the currently using technologies, there are still many problems to be solved.

2.1.1 Elution

The soil elution is the first used soil treatment technology, which commonly involves (1) digging out the contaminated soil; (2) screening to remove oversized components (3) using eluent to clean, remove contaminants (4) backfill the clean soil (Zhao *et al.*, 2019). The elution of soil (Lestan et al., 2008) commonly requires large amounts of chelating agents and the resultant heavy metal-containing washing sewage often leads to the secondary pollution. Tsang et al. fabricate an EDDA chelating agent to deal with the heavy metals contaminated soil, which shows a high extraction efficiency of heavy metal Cu²⁺, Pb²⁺ and Zn²⁺ (Beiyuan et al., 2017). However, such large amounts of chelating agent would not only increase the cost of treatment but also cause a serious decrease in the soil nutrient content (Jelusic et al., 2014).

2.1.2 Electrochemistry

The currently used electrochemistry remediation tech-

nology often applies a direct current (DC) in the soil, transporting and reducing heavy metals on the negative electrode (Xu et al., 2019). The electrochemistry technologies are only feasible for small volumes of heavily polluted shallow soil. Cui et al. report an electrochemistry remediation method to build an asymmetrical alternating current electrochemistry (AACE) technology, which can remove Cu^{2+} , Pb^{2+} and Cd^{2+} at initial concentrations from 100 to 10,000 ppm and enabled recycling of soil washing chemicals (Xu et al., 2019). However, considering the soil is a poor conductor of electricity and the high cost of constructing alternating current electric field, the electrochemistry technology is not suitable for of large-scale application.

2.1.3 Phytoremediation

Recently, the phytoremediation emerges as an efficient technology in soil treatment (Shen *et al.*, 2022). However, the phytoremediation method normally takes long operation time. Cui et al. carry out the phytoremediation by using Solanum nigrum L (Cao et al., 2022). and Medicago sativa L., which can achieve the Cd removal (more than 80%) and PAHs dissipation (more than 90%) in the soil at the same time. Although the phytoremediation can effectively reduce costs, but the long operation time (commonly over 100 days) makes it only suitable for remote areas. Moreover, the heavy metals would accumulate in the plants, which may cause the secondary pollution.

2.1.4 In-situ Mineralization

Considering the large area of heavy metal pollution in China, it's difficult to carry out large-scale elution, electrochemistry or phytoremediation remediation, and the *in-situ* mineralization technology possesses the advantages of economic efficiency and strong operability, which shows great promise for large-scale application. In a typical *in-situ* mineralization process, the mineralizers are used to adsorb or precipitate the heavy metals ions and transform them into a mineralized state, so as to realize the remediation of contaminated soil and water (Mao et al., 2022).

To date, a number of mineralization agents have been applied for heavy metal removal. For example, attapulgite, zeolite, bentonite and biochar have been used as the stabilizers for Cd^{2+} immobilization (Tack, 2018; Rinklebe, 2019). However, these materials have to be repeatedly used (10–220 t/ha) since their affinity and adsorption capacity for Cd^{2+} are very limited. Moreover, accumulation of metals, nitrogen and phosphorus can cause further damage for the crops and soil. In contrast, the carbonate and hydroxides (soda lime) can be used for Cd^{2+} removal, resulting in the formation of $CdCO_3$ and/or $Cd(OH)_2$. However, large amounts (>15 t/ha) and frequent utilization of these mineralization materials are necessary (Bernal, 2014; Chen, 2016) due to relative larger solubility and instability of $CdCO_3$ and $Cd(OH)_2$. Moreover, the massive use of lime into soil can cause soil compaction, and have been rejected in agricultural land in UK. As a result, the development of highly efficient, cost effective, and long-term immobilization ability mineralization materials is highly desirable.

2.2 Studies of Layered Double Hydroxides for treatment of heavy metal ions

2.2.1 Overview of Layered Double Hydroxides

Layered double hydroxides (LDHs), a class of two-dimensional (2D) layered metal-containing clays, are composed of positively charged brucite-like host layers, the intercalated guest anions for charge balance, and solvent molecules (Feng et al., 2015). The general chemical formula of LDHs is $[M(II)_{1-x}M(III)_{x}(OH)_{2}]_{x}^{+}[A_{x/n} H_{2}O]^{x-}$, where M^{2+} and M³⁺ represent the divalent and trivalent metal cations (such as Mg^{2+} , Ca^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , Al^{3+} , Fe^{3+} , Cr^{3+} , etc.), while A^{x-} denotes the interlayer anion.(Tan *et al.*, 2019) More importantly, Duan et al proposed the concept of super-stable mineralization of LDHs towards heavy metals for the first time in 2021 (Kong et al., 2021). LDHs can be finely tuned from different perspective: (1) the metal cations on the laminate of LDHs can be adjusted; (Ning et al., 2021) (2) the interlayer anions are able to be regulated such as CO₃²⁻, NO₃⁻, SO₄²⁻; organic anions and polyoxometalates etc. (Chang et al., 2020); (3) the abundant -OH groups on LDH layers provide ample binding sites(Wright et al., 2017). Various functional groups (-SH, -COOH, -NH₂, etc.) can be introduced either on the LDH laminates surface or interlayer spacing (Li et al., 2020). These structural features endow LDHs to be able to adsorb heavy metals by surface adsorption, coordination by interlayer anions, and anion exchange etc.

2.2.2 Removal and mineralization of heavy metal ion by LDHs

In recent years, LDHs are demonstrated to be effective in adsorbing heavy metal ions, which have attracted widespread interest of the academic community (Xu et al., 2022). For example, Ma and coworkers documented that the substitution of $CO_3^{2^2}$ with $MOS_4^{2^2}$ in MgAl-LDH resulted in exceptional removal efficiency for metal ions, particularly demonstrating remarkable selectivity for Ag^+ and Hg^{2+} (Ma *et al.*, 2016). In another recent study, Kong and his team utilized a CaAl-LDH to facilitate the mineralization of Cd^{2+} ions, resulting in the formation of CdAl-LDH. Impressively, this CdAl-LDH displayed outstanding stability during the practical remediation of Cd^{2+} ions, maintaining its effectiveness for a period spanning 3 to 4

years (Kong et al., 2021).

Moreover, Song *et al.* reported the use of a CaFe-LDH stabilizer capable of super-stable mineralization of Ni²⁺ ions, with a maximum saturation removal capacity of 321 mg⁻¹ (Chi *et al.*, 2021). Notably, Song *et al.* firstly demonstrated the isomorphous substitution of CaFe-LDH during the mineralization of Ni²⁺ by using ex situ X-ray diffraction and X-ray absorption fine structure (XAFS) characterization.

Given the presence of an abundant -OH groups on the primary layers of LDHs, the -OH groups on the LDH surface readily form coordination bonds with heavy metals. For instance, in a study conducted by Wu *et al.*, a calcined MgZnFe-CO₃ (CMZF) adsorbent was employed to effectively remove AsO₃³⁻ and Cd²⁺, achieving a remarkable removal rate of 99.7% (Liu et al., 2019). The X-ray Photoelectron Spectroscopy (XPS) analysis was employed to reveal that Cd²⁺ and AsO₄³⁻ coordinated with -OH sites on the LDH laminates after adsorption.

In this study, we choose MgFe-LDH for Cd^{2+} removal is due to the following reasons: (1) For soil in south part of China, it is generally lack of Mg²⁺. As such, the Mg²⁺ ions can be released into soil during the isomorphous substitution of Mg²⁺ by Cd²⁺, which is the key for soil nourishment in South part of China; (2) Future study for treatment of AsO₄³⁻ and Cd²⁺ contaminated soil and water, due to the formation of FeAs associated core that is frequently observed in nature, it is necessary to design Fe-containing LDHs.

2.3 Hypotheses

Based on the discussion above, this study hypotheses:

H1. MgFe-LDH will be successfully prepared by co-precipitation method and ion exchange method.

H2. The prepared MgFe-LDH will have good adsorption properties for Cd^{2+} .

H3. MgFe-NO3 will be isomorphic substitution to form CdFe-LDH. MgFe-CO3 will be direct precipitation to form CdCO3.

EXPERIMENTAL SECTION

3.1 Material and synthesis

3.1.1 Experimental material

Magnesium nitrate hexahydrate $(Mg(NO_3)_2 \cdot 6H_2O, 99\%, Sigma-Aldrich)$, ferric nitrate nonahydrate (Fe(NO₃)₃·9H₂O, 99%, Sigma-Aldrich), nitric acid (HNO₃, Sinopharm), sodium carbonate (Na₂CO₃, 99.8%, Fuchen Chemical), sodium hydroxide (NaOH, 96%, Fuchen Chemical) and hexamethylenetetramine (HMT, 98%, Energy Chemical) were used without any further purification.

3.1.2 Material synthesis

Preparation of MgFe-CO₃: The MgFe-CO₃ was synthesized by co-precipitation method. Firstly, 1.76 g Fe(NO₃)₃·9H₂O and 2.18 g Mg(NO₃)₂·6H₂O were added into 25 mL of deionized water to form the solution A. Whereas 100 mL aqueous solution of NaOH (4 g) and Na- $_2$ CO₃ (10.75 g) was recorded as solution B. At 65°C, solution A and solution B were injected dropwise into 50 mL deionized water under magnetic stirring, and the resulting reaction mixture maintained at pH = 10. Then, MgFe-CO₃ powder was obtained after centrifugation, washing and drying (60 °C) overnight.

Preparation of MgFe-NO₃: The MgFe-NO₃ was synthesized by the method of anion-exchange. Firstly, 100 mL methanol and 500 mg MgFe-CO₃ were mixed and stirred under N₂ flow (600 mL/min) at room temperature for 3 h. Subsequently, a solution of HNO₃ and 45 mL methanol was added in the above solution drop by drop, and stirred for 1 h. The resulting suspension was filtered, washed with methanol and vacuum-dried to yield white powder of MgFe-NO₃.

3.2 Characterization

3.2.1 Characterization technique

Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HRTEM) and Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) were carried out to characterize the structure of the MgFe-CO₃, MgFe-NO₃, MgFe-CO₃-bulk and their mineralization products.

3.2.2 Sample making

The XRD sample was prepared by filling the mold directly with the powder.

The FT-IR was obtained by using KBr pellet method. Firstly, the 2 mg as-synthesized sample was mixed in 200 mg KBr, the resulting mixture was evenly ground and filled into a tableting mold under certain pressure to form a transparent slice.

The SEM and HRTEM samples were obtained by ultrasonic mixing of ethanol and LDH powder, and then, the mixture was dropped on a silicon wafer or microgrid for observation after drying.

The ICP-AES samples were prepared by 20 times dilution after fixed time (0-60 min) mineralization.

3.2.3 Material characterization

X-ray diffraction (XRD) patterns were carried out by a Rigaku XRD-6000 diffractometer (λ of Cu K α radiation = 1.5405 Å). Fourier transform infrared (FT-IR) spectra were characterized on a Bruker Vector 22 infrared spec-

trometer. Scanning electron microscopy (SEM) images were obtained with a Zeiss Supra 55 SEM, which was equipped with an Energy dispersive spectroscopy (EDS) detector. High-resolution transmission electron microscopy (HRTEM) images were obtained on a JEOL JEM-2010 transmission electron microscope operating at an acceleration voltage of 200 kV.

3.3 Performance investigation

3.3.1 Kinetic experiment

The adsorption kinetic for Cd^{2+} was explored using various mineralization times (0-60 min) were conducted. For each experiment, 50 mg LDH was placed in a 100 mL beaker and then 50 mL of an aqueous solution containing 300 mg/L Cd^{2+} ions were added, respectively. At specific time intervals as displayed in Figure 5A, 1 mL of suspension was collected and analysed by ICP-AES to determine the heavy metal contents. Other processes were the same as above. The mineralization capacities at contact time (t) and at equilibrium, q_t (mg/g) and q_e (mg/g), respectively, were calculated as displayed below (equations 1-2). The percentage removal was calculated following equation 3. The adsorption kinetics of Cd^{2+} ions on LDHs were investigated according to the pseudo-first-order and pseudo-second-order kinetics equations (equations 4 and 5).

$$q_e = \frac{(C_o - C_e)V}{m} \tag{1}$$

$$q_t = \frac{(C_o - C_t)V}{m} \tag{2}$$

% removal =
$$100* \frac{(C_o - C_i)}{C_0}$$
 (3)

$$\log(q_{e} - q_{i}) = \log q_{e} - \frac{k_{1}}{2.33}t$$
(4)

$$\frac{t}{q_t} = \frac{1}{k_2} q_e^2 + \frac{t}{q}$$
(5)

 C_0 and C_t are the initial and equilibrium concentrations of Cd^{2+} ions (mg/L), respectively, and V and m are the amounts of solvent (mL) and mass (g) of adsorbent. k_1 and k_2 were rate constants for pseudo-first-order and pseudo-second-order equations, respectively.

3.3.2 Thermodynamic experiment

Mineralization isotherms for Cd^{2+} was performed to investigate the mineralization capacity. The removal performances of LDHs were investigated in 100-600 mg/L Cd^{2+} , ions solution, respectively. The experiment data were fitted by the Langmuir isotherm model (Equation (6)) and Freundlich isotherm model (Equation (7)):

$$q_e = \frac{C_e k_L q_m}{1 + k_L C_e} \tag{6}$$

$$q_e = k_F C_e^{\frac{1}{n}} \tag{7}$$

where q_m and C_e are maximum removal capacity and equilibrium concentration, k_L and k_F are Langmuir mineralization and Freundlich mineralization constant, respectively. And n is the heterogeneity factor.

RESULTS AND DISCUSSION

4.1 Structural and Morphological characterization of MgFe-LDH

Figure 1 (A) XRD patterns for MgFe-CO₃ and MgFe-NO₃; (B) FT-IR spectra for MgFe-CO₃ and MgFe-NO₃.

Firstly, we fabricated the catalyst of CO₃²⁻ intercalated MgFe-LDH (denoted as MgFe- CO₃) and NO₃⁻ intercalated MgFe-LDH (denoted as MgFe -NO₃) by using co-precipitation method and ion exchange method, respectively. The XRD patterns (Figure 1A) of the as-prepared Mg-Fe-LDHs (MgFe-CO₃ and MgFe-NO₃) both exhibited the typical LDHs diffraction peaks of (00l) and (110). Compared with MgFe-CO₃, the (003) and (006) peaks of MgFe-NO₃ presented a significant shift to lower degree, indicating a larger basal spacing originated from the vertical intercalation of NO_3^- (Ning *et al.*, 2021). Moreover, the Fourier transform-infrared spectrometer (FT-IR) was used to further prove the MgFe-CO₃ and MgFe-NO₃ were successfully fabricated. Both of them exhibited characteristic absorption peaks at 3447 cm⁻¹ and 1631 cm⁻¹, which can be attributed to -OH group stretching vibration of metal hydroxide layers and the deformation vibration of the interlaminar water, respectively. Notably, the Mg-Fe-CO₃ exhibited an absorption peak at 1364 cm⁻¹, which belonged to asymmetric stretching vibration of at CO_3^{2} . By comparison, for MgFe-NO₃, the sharper absorption peak at 1384 cm⁻¹ can be ascribed to symmetric stretching vibrations of NO₃⁻ (Tan et al., 2019).

Figure 2 (A-B) SEM images of MgFe-CO₃ and MgFe-NO₃; (C-D) HRTEM images of MgFe-CO₃ and MgFe-NO₃.

The scanning electron microscope (SEM) was employed to obtain the morphology of as-prepared catalysts. It can be seen from Figure 1A-B that the MgFe-CO₃ and MgFe-NO₃ both exhibited classic layered structure of LDHs (Tan et al., 2023). However, the stacking degree of laminates in MgFe-NO₃ were apparently lower than MgFe-CO₃, which led to more metal sites in the laminates to be exposed. The corresponding HRTEM images were displayed in Figure 1C-D, in which both of the MgFe-CO₃ and MgFe-NO₃ showed the lattice spacing of 0.19 nm, indicating the (018) facet exposure on the surface of Mg-Fe-LDH. The above characterizations all demonstrated the

successful synthesis of MgFe-CO₃ and MgFe-NO₃.

4.2 Heavy metal mineralization performance of MgFe-LDH

Figure 3. XRD patterns of the mineralization product recovered after the removal of Cd^{2+} using (A) MgFe-CO₃ and (B) MgFe-NO₃ for 0.5, 1, 2, 3, 4. 5 and 6 h, respectively. (Conditions: LDHs = 1 g/L, C₀ = 300 mg/L, V = 50 mL, 25 °C)

The XRD characterization was performed to explore the structural and compositional change of MgFe-CO₃ and MgFe-NO₃ in Cd²⁺ solution, respectively. As displayed in Figure 3A, the characteristic peaks of MgFe-CO₃ maintained the same as the increase of mineralization time (0-6 h), indicating the existing of MgFe-CO₃ in the mineralization products. Interestingly, after 0.5 h of mineralization, two new peaks situated at 30.2° and 36.5° appeared and increased along with the adsorption time, which can be well matched with the (104) and (110) crystal planes of CdCO₃ (JPCDS cards No. 42-1342). In contrast, MgFe-NO₃ displayed different variation of

diffraction peaks compared with that of MgFe-CO₃ (Figure 3B). Firstly, the characteristic diffraction peak intensity of MgFe-NO₃ weakened during the first 1 h of mineralization. With the extension of mineralization time, new diffraction peaks appeared and became dominant at 2θ =11.7°, 31.6° and 33.8°, respectively, which can be corresponding to the (002), (110) and (112) basal XRD patterns of Cd-Fe-LDH (JPCDS cards No. 42-1470). Ultimately, after 6 h of mineralization, the characteristic peaks of MgFe-NO₃ completely disappeared. Hence, we concluded that Mg-Fe-NO₃ has been completely converted to CdFe-LDH after 6 h of mineralization.

Figure 4. FT-IR spectra of the mineralization product recovered after the removal of Cd^{2+} using (A) MgFe-CO₃ and (B) MgFe-NO₃ for 6 h (conditions: LDHs = 1 g/L, C₀ = 300 mg/L, V = 50 mL, 6 h, 25 °C)

Furthermore, the precipitates after the mineralization of Cd^{2+} by MgFe-CO₃ and MgFe-NO₃ for 6 h were subjected to FT-IR analysis, respectively (Figure 4A and 4B). As was observed, the infrared characteristic peaks of precipitates after the mineralization had no obvious shift com-

pared with that of MgFe-CO₃ and MgFe-NO₃. In addition, the stretching vibration at 1364 cm⁻¹ (CO₃⁻²) and 1384 cm⁻¹ (NO₃) remained in position after mineralization, indicating that there was no obvious change in the types of interlayer anions.

Figure 5. SEM images of (A-C) MgFe-CO₃, and (D-F) MgFe-NO₃ before and after adsorption in Cd²⁺ solution for 0.5h and 6h, respectively.

The morphology change of both MgFe-CO₃ and Mg-Fe-NO₃ in the process of mineralization were examined by SEM (Figure 5). As shown in Figure 5A, the pristine morphology of MgFe-CO₃ showed a flower-like shape with a diameter of about 200 nm (Figure 5A). After 0.5 h of mineralization, the size of the LDHs sheets did not change significantly. Subsequently, it can be clearly observed that after 6 h of mineralization, many cubes with diameters of about 500 nm appeared on the surface of MgFe-CO₃, indicating that a new substance was generated (Figure 5C). Combing with the results of XRD, such cubes can be designated as CdCO₃. Interestingly, the sheets of as-prepared MgFe-NO₃ exhibited an average size of ~ 10 nm (Figure 5D). With the extension of mineralization time, the diameter of the sheets increased significantly to 200 nm in 0.5 h. After 6 h, hexagonal nanosheets with diameters of 5 μ m generated eventually (Figure 5F), which can be attributed to the formation of CdFe-LDH.

Figure 6 HRTEM images of (A-C) MgFe-CO₃, and (D-F) MgFe-NO₃ before and after adsorption in Cd²⁺ solution for 0.5h and 6h, respectively.

The HRTEM images further proved the mineralization of Cd^{2+} by MgFe-CO₃ and MgFe-NO₃ went through different process from a more microscopic perspective. For the MgFe-CO₃, only MgFe-LDH lattice fringe can be detected at the beginning (Figure 6A). When the removal process extended to 0.5h, the 0.24 and 0.25 nm lattice spacing were observed, which can be assigned to the exposure of (110) and (113) facets of CdCO₃ (Figure 6B). Besides, the lattice fringe of MgFe-LDH was also existed, indicating the incomplete transformation of MgFe-LDH towards CdCO₃. After 6h mineralization of Cd²⁺ (Figure 6C), the

lattice fringe of MgFe-LDH was not visible, illustrating the structure of MgFe-LDH was fully destroyed by the formation of CdCO₃. For the MgFe-NO₃ in Figure 6D-F, compared with the initial MgFe-NO₃, the lattice fringe of CdFe-LDH started to appear after 0.5h mineralization of Cd²⁺. After 6h, the lattice fringe of the large planner sheets was totally belonged to CdFe-LDH. The above results were in good line with the SEM and XRD tests.

4.3 Heavy metal adsorption performance of MgFe-LDH

Figure 7. Mineralization capacity of Cd²⁺ using (A) MgFe-CO₃, and MgFe-NO₃ for 6 h, removal performance of (B) MgFe-CO₃ and MgFe-NO₃ in Cd²⁺ solution with a concentration range of 10–1200 ppm (dose=1 g/L, 25 °C, pH=6).

The removal performance of MgFe-CO₃ and MgFe-NO₃ were studied in the same concentration of Cd^{2+} (dose=1) g/L, C₀=300 mg/L, Figure 7A). As shown in Figure 7A, the MgFe-CO₃ did not reach the mineralization equilibrium after about 50 h, by contrast, MgFe-NO₃ showed a shorter mineralization equilibrium time of 10 h. Moreover, compared with MgFe-CO₃, MgFe-NO₃ exhibited a higher removal efficiency toward Cd²⁺, which can reach to more than 97% within 10 h, while MgFe-CO₃ only showed low removal efficiency of 30% after 50 h of mineralization. Additionally, the adsorption kinetics of Cd²⁺ ions using MgFe-CO₃ and MgFe-NO₃ as adsorbents were further investigated (Table 1). For MgFe-NO₃, t/q_t as a function of time for Cd²⁺ was well consistent with the pseudo-second-order kinetic model with $R^2 = 0.9952$. In contrast, $\log(q_{\scriptscriptstyle e}-q_{\scriptscriptstyle t})$ as a function of time was not well in line with the pseudo-first-order kinetic model (R^2 = 0.9651), indicating that the mineralization process tended to be chemisorption rather than physisorption (Kong et al., 2021). However, compared with pseudo-second-order kinetic model, MgFe-CO₃ can be fitted well with pseudo-first-order kinetic model($R^2 = 0.9970$).

To investigate the mineralization capacity of the Mg-Fe-CO₃ and MgFe-NO₃, the equilibrium adsorption isotherm was carried out in different concertation of Cd²⁺ solution (10 - 1200 mg/L, Figure 7B). The mineralization results were fitted by Langmuir and Freundlich models, respectively. For both of MgFe-CO₃ and MgFe-NO₃, the R^2 value fitted from the Langmuir isotherm model (Table 2, $R^2 = 0.9998$ and 0.9937) were much higher than that of Freundlich isotherm model ($R^2 = 0.5610$ and 0.9297), respectively, demonstrating that the Cd²⁺ adsorbed monolayer on both MgFe-CO₃ and MgFe-NO₃ (Chen et al., 2021). Meanwhile, the MgFe-NO₃ showed an ultra-high theoretical maximum saturated adsorption capacity (q_m) value of 444.44 mg/g fitting based on Langmuir model, while that of the MgFe-CO₃ was much lower (157.48 mg/ g), illustrating that the Cd²⁺ adsorption driven by isomorphic substitution of MgFe-NO3 was beneficial to the mineralization capacity (Kong et al., 2021).

 Table 1. Kinetic parameters obtained after applying pseudo-first and second-order kinetics equations

Motoriala	I	Pseudo-first Orde	r	Pseudo-second Order				
Waterials	q _e (mg/g)	k ₁ (L/min)	\mathbb{R}^2	q _e (mg/g)	$k_2(g/(mg/min))$	\mathbf{R}^2		
MgFe-CO ₃	63.38	0.04	0.9970	10.60	1.003	0.9675		
MgFe-NO ₃	317.96	0.43	0.9651	194.17	0.008	0.9952		

Table 2. The fitting results of Langmuir model and Freundlich model for MgFe-CO₃ and MgFe-NO₃, respectively.

	Lang	gmuir isotherm m	nodel	Freu	ndlich isotherm n	nodel
Materials	q _m (mg/g)	k ₁ (L/g)	R^2	n	$\begin{matrix} k_{\rm f} \\ (mg/g)*(L/ \\ mg)^{1/n} \end{matrix}$	R^2
MgFe-CO ₃	157.48	-9.39	0.9998	1.96	0.034	0.5610
MgFe-NO ₃	444.44	0.13	0.9937	2.04	2.24	0.9297

Conclusion

5.1 Summary of findings

To summarize, this study demonstrates the successful fabrication of MgFe-NO₃ and MgFe-CO₃ by using co-precipitation method and ion exchange method, respectively. The as-prepared mineralizer was fully characterized by XRD, FT-IR, SEM, and HRTEM. When applied for the adsorption of Cd²⁺ ions in water, it was demonstrated that the adsorption process of MgFe-NO₃ was in good line with the pseudo-second-order adsorption and Langmuir adsorption model, whereas the MgFe-CO₃ followed pseudo-first-order adsorption and Langmuir adsorption model. The maximum adsorption capacity can reach 444.44 and 157.48 mg/g for MgFe-NO₃ and MgFe-CO₃, respectively. Detailed characterization showed that for MgFe-NO₃, the isomorphous substitution dominated the adsorption process, while for MgFe-CO₃, the formation of CdCO₃ was observed.

5.2 Limitations of the study

Although, some preliminary results on remediation of Cd²⁺ contaminated soil was carried out, systematic investigation of LDHs application for heavy metals contamination need to be performed in the future.

5.3 Future study

In the future study, these following areas can be explored. (1) In Hunan and Hainan provinces of China, the soil is mainly polluted by Cd and As simultaneously. Due to the formation of FeAs associated core that is frequently found in nature, future work can focus on the use of MgFe-LDH for the remediation of co-existence of Cd^{2+} and AsO_4^{3-} in soil, which is significant for ensuring food security; (2) Rational design of highly selective LDHs for different heavy metal contamination needs to be studied in the next step; (3) Regarding the large-scale preparation of LDHs, it is necessary to take into consideration the green synthesis of LDHs in order to meet with the requirement of practical application.

EVALUATION

EPQ performance

I have long been interested in chemistry and environment related things. I was really shocked one day when I watched TV news about the seriousness of the soil pollution especially heavy metal pollution in China. When I searched the internet, I realized that it is not a problem only in China but a worldwide one. I continued to search for solutions and found out there are different ways to tackle the problem including those in chemistry, which seem promising. Therefore, I decided to choose the removal of heavy metal as my EPQ research direction. Under the guidance of my supervisor, I started to read research papers and I found the most suitable way to deal with Cd^{2+} pollution is mineralization by adopting LDHs. Hence, I think it is feasible to design a study to remove Cd^{2+} in soil by adopting LDHs.

It is a huge challenge to complete a scientific research project by my own and write up a long paper, which I have never done before. For the first time, I read many research papers, made a detailed plan, design experiments, do the experiments, observe and record the progress of each experiment, collect data and do the statistics, analyzed the results and wrote the paper. This is indeed a long and hard process and very challenging in many ways. In the face of a large number of professional literatures, I was very confused at first. There are a lot of professional words and it took a lot of time to look them up at beginning. However, with continuous effort in remembering them, I became more skilled in reading journal papers and can find the part I need. Then, the experimental part is no easy job at all. Doing experiments are fun. However, I do not have much experience. Even with the help of my supervisor, I made a lot of mistakes. The process is painful but happy. I often had to work for up to 10 hours a day and ended up with sore legs. But after seeing the results, I felt great and my efforts were paid off. The results kept motivating me to enjoy the experiments more. Finally, the long thesis required for the EPQ project is an enormous task. I have never written a paper of this length, and I lack research paper writing training. Fortunately, with the help of my thesis supervisor, I revised my paper over and over again, and also learned from other people's articles. Finally, I have a decent academic paper of my own.

This EPQ project not only improved my skills in literature collection and a critical review of previous research, but also improved my time management skills and perseverance in doing research. What's more, I have learnt from the failures and improved my chemistry knowledge and experiment skills. Finally, my writing skills and logical thinking have been trained.

I have to admit that my paper only studied the removal of the heavy metal ions Cd^{2+} by specific LDH. The limitations are obvious. Systematic investigation of LDHs application for heavy metal contamination needs to be performed in the future.

The EPQ project allowed me to experience the complete process of scientific research for the first time, from topic selection to planning, to searching for literature, to doing experiments and to paper writing. Not only has it enriched my scientific research experience, but also I have developed a passion for the topic and chemistry study in general. In my future university life, when I encounter a scientific research project, I would not be afraid and can follow the steps and principles that I learned from this EPQ project. I can take advantage of the skills I gained from this project and further develop my knowledge and skills in research and in study in general.

References

Beiyuan, J., Tsang, D. C. W., Valix, M., Zhang, W., Yang, X., Ok, Y. S., & Li, X.-D. (2017). Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment. *Chemosphere*, *166*, 489-496.

https://doi.org/10.1016/j.chemosphere.2016.09.110

Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. V., Montanarella, L., & Panagos, P. (2013). An assessment of the global impact of 21st century land use change on soil erosion. *Nature Communications*, 8, 2017.

https://doi.org/10.1038/s41467-017-02142-7

Cao, X., Cui, X., Xie, M., Zhao, R., Xu, L., Ni, S., & Cui,

Z. (2022). Amendments and bioaugmentation enhanced phytoremediation and micro-ecology for PAHs and heavy metals co-contaminated soils. *Journal of Hazardous Materials*, 426. https://doi.org/10.1016/j.jhazmat.2021.128096

Chang, W., Qi, B., & Song, Y.-F. (2020). Step-by-Step Assembly of 2D Confined Chiral Space Endowing Achiral Clusters with Asymmetric Catalytic Activity for Epoxidation of Allylic Alcohols. *ACS Applied Materials & Interfaces*, *12*(32), 36389-36397.

https://doi.org/10.1021/acsami.0c10207

Chen, M., Liu, T., Zhang, X., Zhang, R., Tang, S., Yuan, Y., Xie, Z., Liu, Y., Wang, H., Fedorovich, K. V., & Wang, N. (2021). Photoinduced Enhancement of Uranium Extraction from Seawater by MOF/Black Phosphorus Quantum Dots Heterojunction Anchored on Cellulose Nanofiber Aerogel. *Advanced Functional Materials*, *31*(22).

https://doi.org/10.1002/adfm.202100106

Chi, H., Wang, J., Wang, H., Li, S., Yang, M., Bai, S., Li, C., Sun, X., Zhao, Y., & Song, Y. F. (2021). Super-Stable Mineralization of Ni2+ Ions from Wastewater using CaFe Layered Double Hydroxide. *Advanced Functional Materials*, *32*(5).

https://doi.org/10.1002/adfm.202106645

Feng, J., He, Y., Liu, Y., Du, Y., & Li, D. (2015). Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects. *Chemical Society Reviews*, 44(15), 5291-5319.

https://doi.org/10.1039/c5cs00268k

Hou, D., O'Connor, D., Igalavithana, A. D., Tsang, D. C. W., Sparks, D. L., & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. *Nature Reviews Earth & Environment*, 1(7), 366-381.

https://doi.org/10.1038/s43017-020-0061-y

Jelusic, M., Vodnik, D., Macek, I., & Lestan, D. (2014). Effect of EDTA washing of metal polluted garden soils. Part II: Can remediated soil be used as a plant substrate? *Science of the Total Environment*, *475*, 142-152.

https://doi.org/10.1016/j.scitotenv.2013.11.111

Kong, X., Ge, R., Liu, T., Xu, S., Hao, P., Zhao, X., Li, Z., Lei, X., & Duan, H. (2021). Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation. *Chemical Engineering Journal*, 407, 127178.

https://doi.org/10.1016/j.cej.2020.127178

Lestan, D., Luo, C.-l., & Li, X.-d. (2008). The use of chelating agents in the remediation of metal-contaminated soils: A review. *Environmental Pollution*, *153*(1), 3-13. https://doi.org/10.1016/j.envpol.2007.11.015

Li, M., Mu, Y., Shang, H., Mao, C., Cao, S., Ai, Z., & Zhang, L. (2020). Phosphate modification enables high efficiency and

electron selectivity of nZVI toward Cr(VI) removal. *Applied Catalysis B: Environmental*, 263.

https://doi.org/10.1016/j.apcatb.2019.118364

Liu, J., Wu, P., Li, S., Chen, M., Cai, W., Zou, D., Zhu, N., & Dang, Z. (2019). Synergistic deep removal of As(III) and Cd(II) by a calcined multifunctional MgZnFe-CO3 layered double hydroxide: Photooxidation, precipitation and adsorption. *Chemosphere*, 225, 115-125.

https://doi.org/10.1016/j.chemosphere.2019.03.009

Liu, Y.-R., Heijden, M. G. A. v. d., Riedo, J., Sanz-Lazaro, C., Eldridge, D. J., Bastida, F., Moreno-Jiménez, E., Zhou, X.-Q., Hu, H.-W., He, J.-Z., Moreno, J. L., Abades, S., Alfaro, F., Bamigboye, A. R., Berdugo, M., Blanco-Pastor, J. L., Ríos, A. d. L., Duran, J., Grebenc, T., Illán, J. G., Makhalanyane, T. P., Molina-Montenegro, M. A., Nahberger, T. U., Peñaloza-Bojacá, G. F., Plaza, C., Rey, A., Rodríguez, A., Siebe, C., Teixido, A. L., Casado-Coy, N., Trivedi, P., Torres-Díaz, C., Verma, J. P., Mukherjee, A., Zeng, X.-M., Wang, L., Wang, J., Zaady, E., Zhou, X., Huang, Q., Tan, W., Zhu, Y.-G., Rillig, M. C., & Delgado-Baquerizo, M. (2023). Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide. *Nature Communications*, 14(1), 1706.

https://doi.org/10.1038/s41467-023-37428-6

Ma, L., Wang, Q., Islam, S. M., Liu, Y., Ma, S., & Kanatzidis, M. G. (2016). Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS42– Ion. *Journal of the American Chemical Society*, *138*(8), 2858-2866. https://doi.org/10.1021/jacs.6b00110

Mao, F., Hao, P., Zhu, Y., Kong, X., & Duan, X. (2022). Layered double hydroxides: Scale production and application in soil remediation as super-stable mineralizer. *Chinese Journal of Chemical Engineering*, *41*, 42-48.

https://doi.org/10.1016/j.cjche.2021.09.023

Ning, C., Wang, Z., Bai, S., Tan, L., Dong, H., Xu, Y., Hao, X., Shen, T., Zhao, J., Zhao, P., Li, Z., Zhao, Y., & Song, Y.-F. (2021). 650 nm-driven syngas evolution from photocatalytic CO2 reduction over Co-containing ternary layered double hydroxide nanosheets. *Chemical Engineering Journal*, *412*.

https://doi.org/10.1016/j.cej.2020.128362

Pérez, A. P., & Eugenio, N. R. (2018). Status of local soil contamination in Europe revision of the indicator "progress in the management contaminated sites in Europe." Publications Office.

Shen, X., Dai, M., Yang, J., Sun, L., Tan, X., Peng, C., d, I. A., & Naz, I. (2022, Mar). A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. *Chemosphere*, *291*(3), 132979.

https://doi.org/10.1016/j.chemosphere.2021.132979

Sun, Z., Wang, Y., Liu, T., Kong, X., Pan, T., Zhang, F., Lei, X.,
& Duan, X. (2023, Apr 5). Super-stable mineralization of Cu,
Cd, Zn and Pb by CaAl-layered double hydroxide: Performance,
mechanism, and large-scale application in agriculture soil

remediation. *Journal of Hazardous Materials*, 447, 130723. https://doi.org/10.1016/j.jhazmat.2023.130723

Tan, L., Sun, X., Bai, S., Song, Z., & Song, Y. F. (2023). Dual Engineering of Lattice Strain and Valence State of NiAl-LDHs for Photoreduction of CO2 to Highly Selective CH4. *Small*, *19*(11).

https://doi.org/10.1002/smll.202205770

Tan, L., Xu, S. M., Wang, Z., Xu, Y., Wang, X., Hao, X., Bai, S., Ning, C., Wang, Y., Zhang, W., Jo, Y. K., Hwang, S. J., Cao, X., Zheng, X., Yan, H., Zhao, Y., Duan, H., & Song, Y. F. (2019). Highly Selective Photoreduction of CO2 with Suppressing H2 Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600 nm. *Angewandte Chemie International Edition*, *58*(34), 11860-11867.

https://doi.org/10.1002/anie.201904246

Wright, C. M. R., Ruengkajorn, K., Kilpatrick, A. F. R., Buffet, J.-C., & O'Hare, D. (2017). Controlling the Surface Hydroxyl Concentration by Thermal Treatment of Layered Double Hydroxides. *Inorganic Chemistry*, *56*(14), 7842-7850.

https://doi.org/10.1021/acs.inorgchem.7b00582

Xu, H., Zhu, S., Xia, M., Wang, F., & Ju, X. (2022). Three-

dimension hierarchical composite via in-situ growth of Zn/Al layered double hydroxide plates onto polyanilinewrapped carbon sphere for efficient naproxen removal. *Journal of Hazardous Materials, 423.* https://doi.org/10.1016/ j.jhazmat.2021.127192

Xu, J., Liu, C., Hsu, P.-C., Zhao, J., Wu, T., Tang, J., Liu, K., & Cui, Y. (2019, Jun 4). Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. *Nature Communications*, *10*(1), 2440.

https://doi.org/10.1038/s41467-019-10472-x

Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018, Nov 15). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. *Science of the Total Environment*, 642, 690-700.

https://doi.org/10.1016/j.scitotenv.2018.06.068

Zhao, T., Zhang, K., Chen, J., Shi, X., Li, X., Ma, Y., & Xu, S. (2019, Apr 15). Changes in heavy metal mobility and availability in contaminated wet-land soil remediated using lignin-based poly(acrylic acid). *Journal of Hazardous Materials*, *368*, 459-467. https://doi.org/10.1016/j.jhazmat.2019.01.061

NI 77	G	D		5.31-	6.7-	6.14-	6.21-	6.28-	7.5-	7.12-	7.19-	7.26-	8.2-	8.9-	8.16-	8.23-	8.30-	9.6-
Name: Zian	Song	Da	ate	6.6	6.13	6.20	6.27	7.4	7.11	7.18	7.25	8.1	8.8	8.15	8.22	8.29	9.5	9.12
Time line		Begin	Finish	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(week)		Week	Week	1	2	5	-		0	/	0		10	- 11	12	15	14	15
Search for	plan	1	2															
information	actual	1	2															
online																		
Decide the	plan	2	3															
general topic	actual	2	3															
Create a	plan	3	5															
mind map	actual	3	8															
with contents	uetuui	5	Ŭ															
Detail the	plan	3	4															
subject	actual	3	6															
Find and	plan	4	11															
evaluate the	actual	4	14															
data																		
Build the	plan	4	5															
framework of	actual	4	5															
the paper																		
Time	plan	5	6															
planning	actual	5	6															
Write a	plan	6	8															
research	actual	6	8															
proposal	actuar	0	0															
Abstract	plan	7	8															
	actual	7	8															
Introduction	plan	9	10															
Litanotuno	actual	9	10															
Literature	pian	11	10															
review	actual	11	10															
Data	pian	15	18															
collection	actual	13	18															
and analysis																		
Discussion	plan	19	22															
	actual	19	22															
Conclusion	actual	22	23															
	plan	24	25															
Review	actual	24	25															
Proofreading	plan	25	27															
the		25	27															
dissertation	actual	25	27															
Prepare and	plan	27	29						L									
practice																		
1 · · · · ·	actual	27	29															

Appendix A Gantt Diagram of Time- line

Name Zier	Sama	Date		9.13-		9.27-	10.4-	10.11-	10.18-	10.25-	11.1-	11.8-	11.15-	11.22-	11.29-	12.6-	12.13-
Name: Ziai	Song		ate	9.19	9.26	10.3	10.10	10.17	10.24	10.31	11.7	11.14	11.21	11.28	12.5	12.12	12.19
Time line		Begin	Finish	16	17	19	10	20	21	22	22	24	25	26	27	20	20
(week)		Week	Week	10	17	10	19	20	21	22	23	24	23	20	21	20	29
Search for	plan	1	2														
information online	actual	1	2														

Decide the	plan	2	3								
general topic	actual	2	3								
Create	plan	3	5								
a mind											
man with	actual	3	8								
map with	aotaai	5	Ũ								
Contents Detail the	mlan	2	4								
Detail the	plan	3	4						 		
subject	actual	3	6								
Find and	plan	4	11					 	 	 	
evaluate the	actual	4	14								
data	actuar	-	14								
Build the	plan	4	5								
framework			_								
of the paper	actual	4	5								
Time	nlan	5	6						 	 	
-1i	actual	5	6								
Write e	nlon	5	0	 		 	 	 	 	 	
write a	pian	0	0								
research	actual	6	8								
proposal											
Abstract	plan	7	8								
riosuuet	actual	7	8								
Introduction	plan	9	10						 		
T	actual	9	10								
Literature	plan	11	16	 		 	 	 	 	 	
review	actual	11	16								
Data	plan	13	18					 	 	 	
collection	a atu a l	12	10								
and analysis	actual	15	18								
	plan	19	22						 		
Discussion	actual	19	22						 		
G 1 .	plan	22	23								
Conclusion	actual	22	23								
Poviow	plan	24	25								
Keview	actual	24	25								
Proofreading	plan	25	27								
the	. 1	25	07								
dissertation	actual	25	27								
Prepare and	plan	27	29								
practice											
practice .	actual	27	29								
presentation											

Final	~	7						
Reliability	م	n						
Usefulness	4	4						
Link	http://www.ce.cn/cysc/sp/info/201305/21/ t20130521_21493483.shtml	https://w.ww.nature.com/articles/s43017- 020-0061-y						
Evaluation	In the news broadcast a few years ago, the food security problem caused by soil pollution was reported, which made people realize that soil safety is very important, after all, "food is the heaven, food safety is the first." This kind of soil pollution caused by heavy metal ions has become my research background, and the facts in front of people also make this research more meaningful and convincing	The article has high timeliness and credibility, and the main points it puts forward trigger me to conduct experiments and investigations. Help me clear the direction of the experiment, and serve as a powerful basis and point of view behind my experiment						
Summary	The situation of heavy metal pollution in cultivated land in China is severe, and mass incidents often occur because of heavy metal pollution in soil	Natural causes and human activities led to a large number of heavy metals entering cultivated land and causing pollution.						
Publication	2013 5 21	2020						
Publisher	CCTV NEWS	Nature Reviews Earth &: Environment, 1(7), pp. 366–381.						
Author(s)		Deyi Hou David O'Connor Avanthi D. Igalavithana Daniel S. Alessi Jie Luo Daniel C. Tsang Donald L. Sparks Yusuke Yamauchi Jörg Rinklebe Yong Sik Ok						
Resource type	news	journal						
Title	Guangdong found nine batches of cadmium excessive rice Hunan three manufacturers stopped production	Metal contamination and bioremediation of agricultural soils for Food Safety and Sustainability						

15

Appendix B Resources assessment

							, ,	~										7
	м м																Ś	
	Ŷ																ŝ	
	https://link.springer.com/ book/10.1007/978-94-007-4470-7																https://www.sciencedirect.com/science/ article/pii/S0048969718340762	
	The article clearly describes	the source of soil pollution and	its impact on human beings.	Narrowed my research once	again in a short period of time.	The pollution of lead, zinc,	cadmium and copper mentioned	in the article made me focus on	the investigation and research	of these heavy metal ions. His	mention of different pollution	treatment methods in different	countries also gave me a new	inspiration.		The authoritative national soil	survey data clearly shows that	food safety and cultivated land pollution in our country are urgent problems. The analysis of he types of pollutants shows that inorganic heavy metals are the main pollutants, and cadmium is the most serious pollution. With such a large number of data, let ne narrow my focus to cadmium, a heavy metal contaminant. The normous impact of soil pollution and the urgent need to deal with it also reflect the need for this research.
localised contamination from	a predominant single source,	such as a metal smelter can	have a marked effect on soils,	vegetation and possibly also	on the health of the local	population, especially in	countries where there are	inadequate emission controls	and soil quality standards.	Soils in all urban areas are	generally contaminated with	lead (Pb), zinc (Zn), cadmium	(Cd) and copper (Cu) from	traffic, paint and many other	non-specific urban sources.			Through the understanding of food safety and cultivated land pollution in China found: The total rate of soil exceeding the standard was 16.1%. The total amount of soil pollution is enormous Types of pollutants: Mainly inorganic heavy metals is the most serious (7%) is the most serious (7%)
							6100	5102										2019
							Dordrecht,	Netherlands: Springer.										Science of The Total Environment, 651, pp. 3034–3042.
	Brian J. Alloway														Ying Huang Lingyu Wang Wenjia Wang Tingqiang Li Zhenli He Xiaoe Yang			
journal																journal		
						Heavy metals in soils:	Trace metals and	metalloids in soils and	their bioavailability.									Current status of agricultural soil pollution by heavy metals in China: A meta-analysis

~	7
N.	N
m	4
https://www.sciencedirect. com/science/article/pii/ S004565351631311X?via%.3Dihub	https://www.nature.com/articles/s41467- 017-02142-7#citeas
This study provides a way to simultaneously remove the heavy metal Cu, Zn and Pb in soil by a two-stage soil washing method using EDDA as washing agent. However, to avoid the soil damage, plenty of oxidants, alkaline solvent and organic acid are added during the washing process. Such two-stage washing method is low efficient and time consuming. Hence, this work inspired me to seek another cennology to deal with the heavy metal pollution in soil.	This study clearly expound the sever situation of soil erosion in the 21th century and predict the soil pollution in 2030, making me realize that the treatment of heavy metal pollution is urgent. Meanwhile, the authors' mention of the pollution will be more serious in the undeveloped area also remind me that the seek of an efficient and cost-effective echnology to solve the addressed problem is important.
In this study, the authors sequentially use reducing agents, oxidants, alkaline solvents, and organic acids in a two-stage soil washing, followed by a biodegradable chelating agent (EDDS, [S,S] -ethylenediamine-distucinic acid). The result comes that the heavy metals (Cu, Zn, Pb) can be successfully removed.	In this work, the authors present an unprecedentedly high resolution (250×250 m) global potential soil erosion model, using a combination of remote sensing, GIS modelling and census data. Moreover, the authors estimate the spatial and temporal effects of land use change between 2001 and to the global application of conservation practices. Their findings indicate a potential overall increase in global soil erosion driven by cropland expansion, especially in the economically underdeveloped areas
2017	2017
Chemosphere, 2017, 166, pp. 489-496	Nature Communications, 2017, 8, pp. 2013
Jingzi Beiyuan Damiel C. W. Tsang Marjorie Valix Weihua Zhang Xin Yang Yong Sik Ok Xiang-Dong Li	Pasquale Borrelli David A. Robinson Larissa R. Fleischer Emanuele Lugato Christine Alewell Katrin Meusburger Sirio Modugno Brigitta Schütt Vito Ferro Vincenzo Bagarello Kristof Van Oost Luca Montanarella Panos Panagos
oumal	jo Unmal
Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment	An assessment of the global impact of 21st century land use change on soil erosion

7	7
ν.	Ś
ν.	4
https://onlinelibrary.wiley.com/ doi/10.1002/adfm.202106645	https://pubs.rsc.org/en/content/ articlelanding/2015/CS/C500268K
This study demonstrates that the heavy metals can be efficiently mineralized through the isomorphous substitution process by using LDHs as mineralizer, which inspired me to use LDHs- based mineralizer to deal with other heavy metal pollutions in soil.	In this review, the authors introduce the fine structure of layered double hydroxides and its application in catalysis, which help me better understand the basic host-gust intercalation structure and the potential applications of layered double hydroxides.
In this work, the authors report the application of a CaFe-LDH stabilizer which is capable of mineralizing of Ni with a maximum saturation removal capacity of 321 mg/g, Meanwhile, Song et al. firstly demonstrate the isomorphous substitution of CaFe-LDH during the mineralization process of Ni2+ by using ex- situ X-ray diffraction and X-ray absorption fine structure (XAFS) characterization.	Layered double hydroxides (LDHs) with the advantages of unique structure, composition diversity, high stability, ease of preparation and low cost have shown great potential in the design and synthesis of novel supported catalysts. This review summarizes the recent progress in supported catalysts by using LDHs as supports/precursors for catalytic oxidation and hydrogenation.
2021	2015
Advanced Functional Materials, 2021, 32, pp. 2106645	Chemical Society Reviews, 2015, 44, pp. 5291-5319
Haoyuan Chi Jikang Wang Hujuan Wang Shaoquan Li Mufei Yang Sha Bai Changjuan Li Xiaoliang Sun Yufei Zhao Yu-Fei Song	Junting Feng Yufei He Yanan Liu Yiyun Dua Dianqing Li
journal	review
Super-Stable Mineralization of Ni2+ Ions from Wastewater using CaFe Layered Double Hydroxide	Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects

In this study, a high In this study, a high removal rate (>99.7%) of combined arsenite (As(III)) and Cd (Cd(II)) in low and Cd (Cd(II)) in low and Cd (Cd(II)) in low concentration (1000 µg/L) from contaminated water WgZnFe-LDHs as absorbent. WgZnFe-CO3 layered MgZnFe-CO3 layered MgZnFe-CO3 layered MgZnFe-CO3 layered MsZnFe-CO3 layered is capable of oxidating As(III) to double hydroxide (CMZF) As (V) under light irradiation. synergistic interaction among adsorbent. Meanwhile, the As(III) molecule, As (V) and Cd(II) cation in multiple heavy metal polluted molto action in Multi molecule, As (V) anion and Cd(II) cation in multiple heavy metal polluted water and inspired me that the Moreover, the As(III) and Fe-based LDHs are expected to Cd(III) in actual water were be an efficient micrealizer.	In this work, the authors report a heterogeneous photocatalyst system consisting of a ruthenium consisting of a ruthenium complex and a monolayer nickel-alumina layered double hydroxide (Ni Al-LDH), which This work clearly shows the XRD hydroxide (Ni Al-LDH), which This work clearly shows the XRD hydroxide (Ni Al-LDH), which This work clearly shows the XRD act as light-harvesting and photoreduction of CO2 and different thickness, which help th20 into CH4 and C0 under me verify whether the as-prepared irradiation with λ >400 nm. By MgFe-LDHs is synthesized procisely tuning the irradiation wavelength, the selectivity of CH4 can be improved to 70.3%, and the H2 evolution reaction can be completely
osphere, 225, pp. 2019 115-125	wandte Chemie aational Edition, , 58, pp. 11543- 11922
Junqin Liu Junqin Liu Pingxiao Wu Shuaishuai Li Meiqing Chen Wentin Cai Dinghui Zou Nengwu Zhu Zhi Dang	Ling Tan Si-Min Xu Zelin Wang Yanqi Xu Xian Wang Xiaojie Hao Sha Bai Xiaojie Hao Sha Bai Chenjun Ning Ange Yu Wang Chenjun Ning Intern Yu Wang Nenkai Zhang Xingzhong Cao Xusheng Zheng Honong Duan Yufei Zhao
val val ad joumal	jacß
Synergistic deep remo of As(III) and Cd(II) b calcined multifunctior MgZnFe-CO3 layere double hydroxide: Photooxidation, precipitation and adsorption	Highly Selective Photoreduction of CO2 with Suppressin H2 Evolution over Monolayer Layered Double Hydroxide unc Irradiation above 600 r

~	~
n	Ŋ
co.	4
https://onlinelibrary.wiley.com/ doi/10.1002/sml1.202205770	https://pubs.acs.org/doi/10.1021/acs. inorgchem.7b00582
This work introduce the synthesize method of layered double hydroxides and shows the SEM and TEM ofLDHs with intercalated ions, which help me verify whether the morphology of the as-prepared MgFe-LDHs is analogous with the reported literature.	This work finely introduce hydroxyl groups on the surface of the layered double hydroxides and their application in catalysis, which inspine me that the abundant -OH groups on LDH can also provide ample binding sites for heavy metal minerlization.
In this work, the authors fabricated different surfactants (C11H23COONa, C12H25SO4Na) C12H25SO4Na) intercalated NiA1-layered double hydroxides (NiA1- LDH), resulting in the formation of LDH-S1 (S1 = C11H23COO-), LDH-S2 (S2 = C12H25SO4-) and LDH-S3 (S3 = C16H33SO4-) with curved morphology. Compared with NiA1-LDH with a 1.53% selectivity of CH4, LDH-S2 shows higher selectivity of CH4 (83.07%) and lower activity of HER (3.84%) in CO2 photoreduction reaction (CO2PR).	In this work, the authors report that the surface hydroxyl concentration of layered double hydroxides can be controlled by thermal treatment of these materials under vacuum, leading to hydroxyl numbers (aOH) similar to those of dehydroxylated silica, alumina, and magnesium hydroxide.
2023	2017
Small, 2023, 19, pp. 2205770	Inorganic Chemistry, 2017, 56, pp. 7842- 7850
Ling Tan Xiaoliang Sun Sha Bai Ziheng Song Yu-Fei Song	Christopher M. R. Wright Kanittika Ruengkajorn Alexander F. R. Kilpatrick Jean-Charles BuffetOrcid Dermot O'Hare*Orcid
jourmal	journal
Dual Engineering of Lattice Strain and Valence State of NiAl-LDHs for Photoreduction of CO2 to Highly Selective CH4	Controlling the Surface Hydroxyl Concentration by Thermal Treatment of Layered Double Hydroxides

~	5
v,	v,
4	Ŋ
https://www.sciencedirect. com/science/article/pii/ S0269749107005623?via%.3Dihub	https://www.sciencedirect.com/science/ article/pii/S1385894720333052
This review discusses the advantages and disadvantages of the soil elution technology of soil remediation. The review shows that the resultant heavy metal- containing washing sewage often leads to the secondary pollution.	This article confirms that LDH has a good mineralization performance towards Cd, which can provide a guidance for the design of my experiments.
This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be carried out in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil column leaching. Finally, the treatment and secondary pollution of the chelating agent has been discussed.	This article report a CaAl- layered double hydroxide as an efficient stabilizar for Cd2+ in-situ immobilization both in lab scale and practice remediation. This material presents fast sorption rate (ca. 5 min) and high capture (ca. 5 min) and high capture capacity (592 mg/g) towards Cd2+ in solution, and high immobilization efficiency (up to 96.9%) in soil remediation. The concept of Super-stable mineralization has been first proposed in the article.
2008	2021
Environ. Pollut. 2008, 153, pp. 3.	Chemical Engineering Journal, 2021, 407, pp. 127178.
Domen Lestan Chun-ling Luo Xiang-dong Li	Xianggui Kong Ruixiang Ge Tian Liu Simin Xu Peipei Hao Xiaojie Zhao Zhenhua Li Xiaodong Lei Haohong Duan
jound	jounal
The use of chelating agents in the remediation of metal-contaminated soils: A review	Super-stable mineralization of cadmium by calcium- aluminum layered double hydroxide and its large-scale application in agriculture soil remediation

~	~												
v,	'n												
v	4												
https://doi.org/10.1038/s41467-023-37428-	https://www.sciencedirect.com/science/ article/pii/S0304389423000055												
In the article, the author points out human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.	This article illustrates that the mineralization technology turms out to be a reliable, safe and economical method in the remediation of Cu2+, Pb2+ and Zn2+ contaminated soil.												
There are many kinds of contamination similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe, however, the importance of human and natural factors in explaining soil contamination across contrasting ecosystems remains virtually unknown. So that the aritcle demonstrates the soil contamination in nearby natural areas mirrors that inurban green spaces worldwide.	The synthesized CaAl- layered double hydroxide (CaAl-LDH) shows excellent performance in potentially toxic metals (PTMs) removal, with the high removal capacity of 502.4, 315.2 and 600.0 mg/g respectively towards Cu2+, Zn2+ and Pb2+ in aqueous solution. Also, the as-prepared CaAl- LDHs can mineralize the Cu2+, Zn2+ and Pb2+ in soil with the removal efficiency of 30.15 %, 67.30 % and 38.71 %, respectively.												
2023	2023												
Nature Communications, 2023, 14, pp. 1706.	Journal of Hazardous Materials, 2023, 447, pp. 130723.												
Yu-Rong Liu Marcel G A van der Heijden Judith Riedo Carlos Sanz-Lazaro David J Eldridge Felipe Bastida et al.	Zewen Sun Yiping Wang Tian Liu Xianggui Kong Tianzun Pan Fazhi Zhang Xiaodong Lei Xue Duan												
j.	j. J.												
Soil contamination in nearby natural areas mirrors that inurban greenspacesworldwide	Super-stable mineralization of Cu, Cd, Zn and Pb by CaAl- layered double hydroxide: Performance, mechanism, and large-scale application in agriculture soil remediation												

~	7													
v,	۰ <u>۰</u>													
ν,	ν.													
https://pubs.acs.org/doi/10.1021/ jacs.6b00110	ps://www.nature.com/articles/s41467- 9-10472-x?utm_source=xmol&utm_ medium=affiliate&utm_ tent=meta&utm_campaign=DDCN_1_ GL01_metadata													
The article demonstrates the coordination and intercalation structures of MgAI-MoS4 can promote the adsorption of heavy metal ions. The results can help us to understand the multiple interactions of the mineralization products in the host-guest structure of LDHs.	The study proposes a new electrochemistry remediation method of heavy metal contaminated soil. Such method provides a fast and efficiency pathway to deal with the seriously polluted soil. However, However, considering the soil is a poor conductor of electricity and the high cost of constructing alternating current electric field, the electrochemistry technology is not suitable for of large-scale application.													
The author synthesized the MgAl-MoS4, which can rapidly lower the concentrations of Cu2+, Pb2+, Hg2+, and Ag+ from ppm levels to trace levels of≤1 ppb. For the highly toxic Hg2+ (at 30 ppm concentration), the adsorption is exceptionally rapid and highly selective, showing a 97.3% removal within 5 min, and 100% removal within 1 h)	The article reports the design of a remediation method based on electrochemistry that achieves high degrees of contaminant removal for different heavy metals (copper, lead, cadmium), all reaching corresponding regulation levels for residential scenario after rational treatment time (from 30 min to 6h). No excessive mutrient loss in treated soil is observed and no secondary toxic product is produced. Long-term experiment and plant assay show the high sustainability of the method and its feasibility for agricultural use.													
2016	2019													
Journal of the American Chemical Society, 2016, 138(8), pp. 2858-2866.	Nature Communications, 2019, 10(1), pp. 2440.													
Lijiao Ma Qing Wang Saiful M. Islam Yingchun Liu Shulan Ma Mercouri G. Kanatzidis	Jinwei Xu Chong Liu Po-Chun Hsu Jie Zhao Tong Wu Jing Tang Kai Liu Yi Cui													
joumal	jo													
Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with MoS4- ion	Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry													

7	7													
نم.	ν,													
m	m													
https://www.sciencedirect.com/science/ article/pii/S1004954121005036	ttps://www.sciencedirect.com/science/ article/pii/S0045653521034512													
This mini-review shed light on the applications of LDHs in the remediation of heavy metal contamination. Also, the review proves the feasibility of the design of my experiments.	The study proves that the phytoremediation technology has been considered as an efficient technology in soil treatment. However, the phytoremediation method normally takes long operation time. Hence, this work reminds me to focus on the advantages and disadvantages of the various remediation technologies, in order to find a most suitable remediation methods towards different working conditions.													
This work mainly focused on the scale production strategy of LDHs with low- cost, and its application in soil remediation. Besides, several key challenges in using LDHs as amendments for immobilization of heavy metal ions are presented.	The review mainly focuses on the exploration of different forms of heavy metals in plants, which can help to explore appropriate disposal methods. Meanwhile, according to the challenges of phytoremediation, the author put forward some views and recommendations for the sustainable and rapid development of phytoremediation technology.													
2021	2022													
Chinese Journal of Chemical Engineering, 2022, 41, pp. 42-48.	Chemosphere,2022, 291, pp. 132979.													
Fangqi Mao Peipei Hao Yuquan Zhu Xianggui Kong Xue Duan	Xing Shen Min Dai Jiawei Yang Lin Sun Xiao Tan Xiao Tan Changsheng Peng Imran Ali d Iffat Naz													
journal	journal													
Layered double hydroxides: Scale duction and application n soil remediation as pper-stable mineralizer	A critical review on the phytoremediation of heavy metals from environment: Performance and challenges													

															~															
															5															
															4															
														https://tv.cctv.com/2020/08/30/	VIDEQ4tsnNNJV2pVZxoyO4Un200830.	shtml														
		As an academician of the Chinese	Academy of Engineering and	an expert in environmental	engineering, the speaker of this	video has made considerable	achievements in the field of	environment and enjoys a high	reputation, which makes his	speech highly credible. The	specific description of the four	aspects makes people have a	clear understanding of the current	status and limitations of soil	pollution control in China. The	speech mentioned two treatment	methods for moderate and mild	heavy metal contaminated	soil, using phytoremediation	and mineralization technology	respectively, which provided	help for my research. It	supplemented my knowledge	of phytoremediation and made	me realize that a combination of	pollution treatment techniques	can sometimes achieve better	results.		
In the video, Mr. Zhu Zhu,	academician of the Chinese	Academy of Engineering	and expert in environmental	engineering, as the keynote	speaker, discussed how to	prevent soil pollution in	China in the future from	four aspects: pollution	prevention, establishing a	risk management platform,	and the help of science and	technology to ensure soil	safety and constantly check	shortcomings and fill gaps.	He proposed that China	should use natural ecological	methods to control heavy	metal pollution, and conduct	large-scale data management	to count and predict soil	pollution. At the same time, it	is also necessary to carry out	coordinated remediation, and	do a good job of multi-media	remediation of water, soil and	air. It is necessary to adjust	the layout of soil, plan the use	of soil, adhere to the concept	of green development, and	protect the environment.
															2020 8 30															
															CCTV 2															
															video															
															mollution in the future															

Appendix C Mindmap

