
Dean&Francis

An Advanced Hardware Implementation of the Trial Division
Algorithm for Dividers Utilizing RISC-V ISA

Runpu Wang

The Sino-British College, University of Shanghai for Science and Technology, Shanghai, 200000, China
SBC-22-1024@sbc.usst.edu.cn

Abstract:
In this paper, we try to design a divider based on RISC-V instruction set architecture (ISA). Since the hardware design
of the divider in the ALU is very important for the CPU to implement the arithmetic function. In view of the advantages
of the trial division method in the division algorithm and the popularity of the RISC-V ISA, this paper attempts to
design a trial division divider utilizing the RISC-V ISA. In this design, the principle of trial division, flow chart, state
diagram, RISC-V instructions of division, whole divider module and logic will be designed in detail. To test the function
and feasibility, the hardware description is carried out in the Verilog hardware description language (HDL). In this
description, four division RISC-V instructions are integrated. Modelsim is used to verify and test the functionality of the
divider. The test waveform is used as a result to verify the feasibility of the divider.
Keywords: Divider, Trail division, RISC-V ISA

1. Introduction
In the development of modern computers and automated
machines, MPU and CPU play an important role as core
control units. From the bottom layer of the hardware,
the transistor circuit constitutes the logic gate circuit, the
gate-level circuit of a certain scale constitutes the log-
ic unit with different functions, and the core device is a
variety of logic gates. There are two main directions for
the logic gate-based design method: combinatorial logic
circuits and sequential logic circuits. The combination of
these two design and implementation methods can be used
to design more complex and diverse hardware units. One
of the more well-known products is the CPU. Nowadays,
with the advancement of CPUs, the development of com-
puters and intelligent machinery such as mobile phones,
intelligent equipment and new energy vehicles has reached
an unprecedented stage. As the brain of a computer, the
CPU Is responsible for complex control and operation
tasks, such as performing arithmetic or logical operations,
storing and invoking instructions, handling interruptions,
and so on. As a core and central part, the arithmetic logic
unit (ALU) is responsible for the actual computing tasks
of the computer. [1] ALU is indispensable in a variety of
processor units such as CPU, MPU, GPU, etc. The func-
tion of ALU is to be able to implement basic mathematical
operations, such as addition, subtraction, multiplication,
and division, and the combination of basic operations

can be used to achieve more complex calculations. The
premise of the implementation of these operations is the
corresponding hardware circuit, which is called the ALU
module as a whole. [2] From the ALU module, there
are addition module, subtraction module, multiplication
module and division module. Since binary operations can
correspond to hardware circuits, the gate-level circuit de-
sign of the most basic adders and subtractors is relatively
simple, while the hardware implementations of multipliers
and dividers are relatively complex. The performance of
the ALU is one of the criteria to measure the performance
of the CPU, and it is important to design the computing
module in the ALU with excellent performance. There are
relatively many algorithms and hardware implementations
of the current adder, subtractor, and multiplier modules.
The operation principle of the divider is more complex,
the algorithm and the hardware design are also very di-
verse. Division algorithms can be divided into five class-
es: digit recurrence, functional iteration, very high radix,
table look up, and variable latency. [3]
This article uses the digit recurrence algorithm, the trial
division method. The essence of the trial division method
is to simulate the manual calculation of division, but it is
also adapted to binary. Its calculation principle is simple,
each iteration produces one-bit result, it is very efficient,
and the hardware design is simple and easy to integrate.
From the point of view of practicality, the hardware of the
divider needs to be designed based on a predetermined

ISSN 2959-6157

1

Dean&Francis

instruction set architecture (ISA). The instruction set is an
important bridge between software and hardware. [4, 5, 6]
It is precisely because of the existence of the instruction
set that the upper-layer software can send the instruction
or instruction combination of the command set to the un-
derlying hardware, and manipulate the hardware circuit to
run to achieve the desired operation result.
A hardware architecture based on an instruction set design
is called an instruction set architecture. Currently, it is
divided into two groups, CISC (Complex Instruction Set
Computing) and RISC (Reduced Instruction-Set Com-
puter). [7] With the development of ISAs over the years,
CISC was the first to appear, and complex combined
instructions in this instruction set accounted for the ma-
jority. Many hardware circuits are specifically designed to
implement complex functions with excellent performance,
which is excellent. However, with the development of the
disadvantages, only 20% of the instructions are used in
80% of the scenarios, and the utilization efficiency is low.
Compatibility is considered in every generation of proces-
sor architecture upgrades, which leads to a further large
instruction set, as exemplified by Intel’s x86 architecture
for CPUs. [8] Due to the increasing disadvantages of
CISC, in the 1980s, the new RISC was born, which made
the instruction set architecture develop in the direction of
simplification, such as the familiar ARM architecture, and
the emerging RISC-V instruction set architecture. Due to
the business model, the mainstream X86 architecture and
ARM architecture require commercial authorization to be

designed and developed, and RISC-V, as an open-source
and free architecture, is naturally welcomed and is also
an important research and development object. Therefore,
with the trend of RISC-V, it is of practical significance to
study hardware based on RISC-V instruction set architec-
ture. [9]
This paper aims at designing and implementing a divider
utilizing the trial division. At the same time, to make it has
practical reference significance, the RISC-V ISA is used
in the Verilog HDL.

2. Methodology
2.1 Trial division algorithm
Trail division algorithm is a method derived from the digit
recurrence. This method describes the paper-and-pencil
calculation process, which are the most common and
intuitional algorithms for people to design the hardware
circuit. The process of division is given two numbers, div-
idend and divisor, to obtain two results, the quotient and
the remain. In the mathematic, decimal arithmetic is used
to implement the division process. However, a computer
or divider in an ALU can only carry out the binary arith-
metic through the transistor circuits which correspond to
two states, open circuit and closed circuit. The design of
a divider needs to depend on binary arithmetic division.
In particular, the radix of binary is the number 2, and the
radix of decimal is 10.

Table 1. Trial division for decimal in one iteration

(, ,)D P Qaredecimalnumbers

Trail of Ql−1 Trail result When Result of Ql−1

0 0

Maximumoftrailresult D D D≤ …n n m n m− − − −1 1

−

Q il−1 =

1 1× …P P PPm m− −1 2 1 0

−

2 2× …P P PPm m− −1 2 1 0

−

… ………

i i(9)≤ i P P PP× …m m− −1 2 1 0

−

Table 1 shows the trail operation in one iteration. When
conducting the integer decimal division, for m bits divi-
sor and n bits dividend, the most significant bit (MSB)
of the quotient starts from n-m-1 bit of dividend. In one
iteration, the bit of quotient can be determined by the trial

result, which means to try the number of this bit that the
product of divisor and one bit of quotient can satisfy the
condition, the trial result is less than the first n-m bits of
dividend. Every iteration can determine one bit of quo-
tient. This process is called trial division.

2

Dean&Francis

Table 2. Trial division for binary in one iteration

(, ,)D P Qarebinarynumbers

Trail of Ql−1 Trail result When Result of Ql−1

0 0
Maximumoftrailresult D D D≤ …n n m n m− − − −1 1

−

Q i i orl−1 = =(0 1)
1 1× …P P PPm m− −1 2 1 0

−

After analyzing the decimal quotient principle, the process
of binary quotient trial is essentially a degradation of the
decimal quotient principle. As Table 2 shows, the decimal
test quotient results are as high as ten, while the binary

test results only require two trial results. Since the binary
quotient process only involves two numbers, 0 and 1, it is
equivalent to the comparison process, and only two results
are obtained: larger than or less than.

Fig. 1 Trial division flow chart
The whole process of the trial division method is as fol- lows: Fig. 1 shows that the whole process involves com-

3

Dean&Francis

paring, data shifting, making differences, and assigning
the new remains.
Step 1. After the dividend and divisor are loaded, the ini-
tial value of remain is 0.
Step 2. Compare the remain and divisor and get the two
results which produce two branches.
Step 3. If remain is greater than or equal to the divisor, the
quotient and the dividend shift left for one bit, the LSB of
the quotient is 1, the remain’s value is assigned to the dif-
ference between the remain and the divisor and shifts left,
the LSB of the remain is replaced by the MSB of the div-

idend, if remain is less than the divisor, the quotient and
the dividend shift left, the quotient’s LSB is 0, the remain
is shifted to the left and the LSB is replaced by the MSB
of the dividend.
Step 4. Subtract the counter by one and determine whether
the counter is zero.
Step 5. If the counter is not zero, repeat Step 2 to 4, if the
counter is zero, the calculation is finished, and the quo-
tient and remainder are obtained.

2.2 Division Operations in RISC-V ISA

Table 3. Instruction assembly format of RISC-V ISA
Instruction assembly format

div rd, rsl, rs2 divu rd, rsl, rs2 rem rd, rsl, rs2 remu rd, rsl, rs2

RISC-V ISA defines the optional integer multiplication
and division, as the “M” Standard Extension. There are
four division operation instructions, DIVU/REMU and
DIV/REM. DIV and DIVU perform an XLEN bits by
XLEN bits signed and unsigned integer division of rs1 by
rs2, rounding towards zero. REM and REMU provide the
remainder of the corresponding division operation. For
REM, the sign of the result equals the sign of the divi-
dend. [10]
• The div instruction divides the 32-bit integers in the
operand registers rsl and rs2, where the values in rsl and
rs2 are both treated as signed numbers, and the quotient
obtained by the division is written back to the register rd.
• The divu instruction divides the 32-bit integers in the

operand registers rsl and rs2, where the values in rsl and
rs2 are both treated as unsigned numbers, and the quotient
obtained by the division is written back to the register rd.
• The rem instruction divides the 32-bit integers in the
operand registers rsl and rs2, where the values in sl and
rs2 are both treated as signed numbers, and the remainder
obtained by the division is written back to the register rd.
• The remu instruction divides the 32-bit integers in the
operand registers rsl and rs2, where the values in rs and
rs2 are both treated as unsigned numbers, and the remain-
der obtained by the division is written back to the register
rd.

2.3 Hardware implementation

Fig. 2 State convert diagram
Four states can be defined:
1. IDLE state: free mode, the divider doesn’t work, only

loads the input of dividend and divisor. Other signals
don’t change until skip to another state.

4

Dean&Francis

2. START state: the divider starts working, after loading
the dividend and divisor in IDLE state. The divisor is
checked if it is zero. When it is zero, the divider skips to
the IDLE state. If the divisor is not zero, then the sign
is checked if it is negative. The divider will take the 2’s
complement of the dividend and divisor when they are
negative.

3. CALC state: when the preparation of the start state has
been done, the actual calculation process starts. This pro-
cess executes the whole calculation process.
4. END state: when the calculation step ends, the state
skips to the end state. If the result is in the form of 2’s
complement, then change it into the origin form. All are
done, skip to IDLE state.

Fig. 3 divider module

Fig. 4 Trail division logic
The divider is designed to be a 32-bit divider. The remain
register is a 32-bit register whose initial value is zero. The
dividend register can shift left into the remain register.
The control unit controls when the subtractor works, when
shifts the registers, when inputs new values, etc. The

result can be quotient or reminder, which depend on the
operation the divider executes.

5

Dean&Francis

Fig. 5 Trail division structure chart

3. Test and model evaluation
3.1 Initial settings of Testbench
The entire architecture is modeled using VerilogHDL and
the simulation is running on the Modelsim SE-64. To test
the function of the divider, is to check if the four opera-
tions can work properly. Testbench environment setting:
define the time-scale be 1ns, and clock cycle time be 10
time scales. Define the input and output. Run the instruc-
tions in order, first to be ‘divu’, set the dividend integer
be 8 and divisor be 3. Second to be ‘div’, set the dividend

integer to be negative 8 and divisor to be 3. Third to be
‘rem’, set the dividend integer to be negative 8 and divisor
to be 3. Fourth to be ‘remu’, set the dividend integer be 8
and divisor be 3.

3.2 Instruction code of four operations
(1) op_div = (op_r == 3’b100); //op_r == 100
(2) op_divu = (op_r == 3’b101); //op_r == 101
(3) op_rem = (op_r == 3’b110); //op_r == 110
(4) op_remu = (op_r == 3’b111); //op_r == 111

3.3 Wave diagram

Fig. 6 Result of ‘divu’ instruction

6

Dean&Francis

Fig. 7 Result of ‘div’ instruction

Fig. 8 Result of ‘rem’ instruction

Fig. 9 Result of ‘remu’ instruction
3.3 Interpretation of results
• When the rst (clear) signal and the Start signal jump
high, the divider starts working.
• As Fig. 6, when the op_i is serial data 101, the quotient
operation of the unsigned number is performed. The div-
idend is assigned a value of 8 and the divisor is 3. The
quotient is 2.
• When the op_i is 100 for serial data, the quotient opera-
tion of the signed number is performed.
• As Fig. 7, The dividend is assigned as fffffff8 (i.e. minus
8) and the divisor is still 3. After the operation, the quo-
tient is fffffffe (i.e. minus 2).
• When the op_i is serial data 110, perform the remainder
operation of the signed number.
• As Fig. 8, The dividend is assigned as fffffff8 and the di-
visor is 3. After the calculation, the remainder is fffffffe.
• When the op_i is serial data 111, perform the remainder
operation of the unsigned number.
• As Fig. 9, The dividend is assigned as 8 and the divisor

is 3. After the calculation, the remainder is 2.

3.4 Model evaluation
The divider module implements the division operation
and remainder operation in the basic arithmetic operation.
Through the operation of the testbench program and the
waveform simulation results of Modelsim, it can be seen
that the trial division divider based on the RISC-V instruc-
tion set architecture successfully realizes the four division
functions defined in the RISC-V instruction set. With a
32-bit wide input, the division process takes a lot of clock
cycles, which consumes a large number of clock cycles,
which is undoubtedly a disadvantage of this divider. How-
ever, compared with the dividers constructed by other di-
vision algorithms, the divider of the trial quotient method
has the advantage of a simple principle. At present, the
divider can only do integer division, and floating-point
division is not implemented, which requires an advanced
algorithm design.

7

Dean&Francis

4. Conclusion
This paper attempts to implement a divider utilizing the
algorithm of trail division and combines the four integer
division instructions involved in the existing emerging
RISC-V instruction set architecture. From the results, it
can be seen that the Verilog hardware language descrip-
tion of the test quotient divider is successful, and it also
proves that the test quotient division based on the RISC-V
instruction set can be implemented in hardware.

5. Reference
[1] L. Gopal, N. S. Mohd Mahayadin, A. K. Chowdhury,
A. A. Gopalai and A. K. Singh, “Design and synthesis of
reversible arithmetic and Logic Unit (ALU),” 2014 International
Conference on Computer, Communications, and Control
Technology (I4CT), Langkawi, Malaysia, 2014, pp. 289-293,
doi: 10.1109/I4CT.2014.6914191.
[2] S. Purohit, P. Laddha and R. Parekh, “Implementation
and Physical Design of 8/4-Bit Signed Divider,” 2021 8th
International Conference on Signal Processing and Integrated
Networks (SPIN), Noida, India, 2021, pp. 829-834, doi: 10.1109/
SPIN52536.2021.9566020.
[3] S. F. Obermann and M. J. Flynn, “Division algorithms and
implementations,” in IEEE Transactions on Computers, vol. 46,
no. 8, pp. 833-854, Aug. 1997, doi: 10.1109/12.609274.
[4] Patterson D A, Hennessy J L. Computer organization and
design: the hardware/software interface 5th ed[J]. 2014.

[5] A. Akram and L. Sawalha, “A Study of Performance and
Power Consumption Differences Among Different ISAs,”
2019 22nd Euromicro Conference on Digital System Design
(DSD), Kallithea, Greece, 2019, pp. 628-632, doi: 10.1109/
DSD.2019.00098.
[6] M. Ling, X. Xu, Y. Gu and Z. Pan, “Does the ISA Really
Matter? A Simulation Based Investigation,” 2019 IEEE Pacific
Rim Conference on Communications, Computers and Signal
Processing (PACRIM), Victoria, BC, Canada, 2019, pp. 1-6, doi:
10.1109/PACRIM47961.2019.8985059.
[7] A. D. George, “An overview of RISC vs. CISC,” [1990]
Proceedings. The Twenty-Second Southeastern Symposium on
System Theory, Cookeville, TN, USA, 1990, pp. 436-438, doi:
10.1109/SSST.1990.138185.
[8] Y. He and X. Chen, “Survey and Comparison of Pipeline
of Some RISC and CISC System Architectures,” 2023 8th
International Conference on Computer and Communication
Systems (ICCCS), Guangzhou, China, 2023, pp. 785-790, doi:
10.1109/ICCCS57501.2023.10150975.
[9] D. -T. Nguyen-Hoang, K. -M. Ma, D. -L. Le, H. -H. Thai,
T. -B. -T. Cao and D. -H. Le, “Implementation of a 32-Bit
RISC-V Processor with Cryptography Accelerators on FPGA
and ASIC,” 2022 IEEE Ninth International Conference on
Communications and Electronics (ICCE), Nha Trang, Vietnam,
2022, pp. 219-224, doi: 10.1109/ICCE55644.2022.9852060.
[10] Waterman A, Asanović K. The RISC-V Instruction Set
Manual, Volume I: Unprivileged ISA, Document Version
20191213. SiFive Inc., University of California, Berkeley, 2019.

8

