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Abstract:
The origin of the ring theory can be dated to the early 19th century. With the rapid development of technology, more 
and more complex engineering problems and computer problems need to obtain support and results from more basic 
mathematics theory. Hence, based on this demand, the researcher discovered  that  ring theory is  a very  noteworthy 
math theory for solving the complicated problems above. This paper investigated the ring theory and related articles 
based on number theory and corresponding applications, which produces and results in a literature review in this 
particular direction.
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Introduction
A lot of complicated technologies such as artificial in-
telligence, large complex modelling chip design, and 
algorithms inside the chip need to use ring theory. For 
example, Convolutional Neural Network (CNN) is a Deep 
Learning algorithm designed for working with images 
and video. Previous research showed that using a resi-
due number system on the hardware implementation of 
the convolution layer could reduce at most 37.78% cost 
on hardware compared to complement implementation. 
(Valueva, Nagornov, Lyakhov, Valuev, and Chervyakov 
(2020)) For this reason, scholars need to develop theories 
to satisfy the demands of the development of artificial 
intelligence. Ring theory can be divided into two parts: 
commutative and non-commutative. Commutative ring 
theory began with algebraic number theory, algebraic ge-
ometry, and invariant theory. In commutative ring theory, 
scholars usually focus on rings that have commutative low 
for multiplication.
Non-commutative ring theory is related to complex num-
bers and it was started from the theory of hyper-complex 
number systems. (Kleiner (1998))
We have thoroughly searched most of the related articles 
and recently published papers on ring theory, but there is 
not any relatively complete and inclusive literature review 
that uses ring theory to relate number theory and some of 
its applications. Due to this reason mentioned above, this 
paper fills the gap of one of the small directions literature
review based on the ring theory. In section 2, this paper 
will introduce some important basic knowledge about 
ring theory and number theory, which can establish the 

relationship between ring theory and number theory, 
followed by the discussion about some applications of 
ring theory in number theory such as using ring theory to 
proving elementary number theory question in Section 3. 
The final section concludes the main content of the article 
and proposed potential research and explores the potential 
research area.

Literature Review
Definition, Origin and Development of Ring 
Theory
Ring theory can be divided into commutative ring theo-
ry and non-commutative ring theory. Commutative ring 
theory originated in algebraic number theory, algebraic 
geometry, and invariant theory in the early 19th century. 
Non-commutative ring theory originates from extending 
the complex numbers to various hypercomplex number 
systems.
The representation of curves by equations is the basic idea 
of algebraic geometry.
The key that made algebraic geometry feasible was the 
solution of equations and the improvement of notation in 
the 16th century by Fermat and Descartes who are the two 
founders of algebraic geometry (Stillwell and Stillwell 
(1989)). AW Knapp et al. proposed that number theory 
had a great advance from 1800 to 1840. Euclid, Diophan-
tus, Fermat, Euler, Lagrange, and Legendre made a lot 
of contributions in that period. Fermat’s Last Theorem, 
reciprocity laws, and binary quadratic forms occurred in 
that period which also influenced the kind of algebraic 
number theory we learn today (Knapp (2007)). An invari-
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ant is a property of an object in mathematics that remains 
unchanged after a certain type of operation or transforma-
tion.  Israel  Kleiner  et  al.  proposed that invariant theory 
has roots in both number theory and geometry. Between 
the 1860s and 1880s, invariant theory became a major 
branch of algebra followed by it becoming an indepen-
dent field of study in the mid-nineteenth century (Kleiner 
(1998)). Hamilton (1843) proposed a simple example 
which is the quaternions. Non-commutative ring theory 
originated from this simple example.
Rings are algebraic structures closed  under  addition,  
subtraction,  and multiplication. Malcev (n.d.) who is 
one of the founders of ring theory is an author of the 
Levy-Malcev theorem for Lie algebras which made 
far-reaching contributions to the theory of Lie groups. It is 
also worth mentioning that his teacher Kolmogorov (1900) 
began a new branch of mathematics by the locality (com-
pactness) theorem in mathematical logic.
Shirshov (1962) proposed a lot of theories about free Lie 
algebras, I-algebras, and Jordan and alternative algebras. 
Those theories had a profound influence on the develop-
ment of algebra. Harada proposed extension and lifting 
properties for modules and considered two new classes 
of Artinian rings which contain QF-rings and Nakayama 
rings in the early 1980s. His work first considered the 
extending property for simple submodules and the lifting 
property for maximal submodules of modules with com-
pletely indecomposable decompositions (Harada (1979)).
Israel Kleiner et al. proposed that  both  commutative  
and  noncommutative  rings and their ideals were well-es-
tablished in the first decade of the 20th century (Kleiner 
(1996)). Fraenkel (1914) gave the first abstract definition 
of a ring in 1914. Cohn (2012) proposed that ring first 
just meant a “ring of algebraic integers” before Fraenkel’s 
work. Noether (1923) discovered the relationship between 
chains of prime ideal and dimensions of algebraic variet-
ies followed by Noether (n.d.) abstract commutative rings 
with the ascending chain condition in 1927 and Artin 
(1927) generalized Wedderburn (1908) structure theo-
rems in 1927. Noether and Artin made  the  abstract  ring  
concept  in  the centre of algebra. In 1928, Krull (2020) 
developed Noether’s idea about the dimension as a pow-
erful tool related to a kind of commutative ring. The rings 
involved in this definition are known as Noetherian rings 
and the dimensions of rings are named Krull dimension 
today. Rowen (2012) proposed that a semi-simple Artinian 
ring is the Sun of the solar system of ring theory. Jacobson 
(1956) proposed his density theorem which is the general-
ization of the essence of the Wedderburn-Artin theory be-
gan the structure theory of rings. Every module is a direct 
sum of simple modules which indicate that scholars can
study module in terms of simple modules and Artinian 

Noetherian modules are the best modules by some of their 
properties. Hence, simi-simple Artinian rings are import-
ant (Rowen (2012)).

Directions of Research
In theory, ring theory is basic to learning algebraic geome-
try which is one of the recent popular mathematical areas. 
Cimprič (2012) et al. proposed the extending of the Art-
in-Lang theorem and Krivine-Stengle Stellensätze from R 
to Mn(R). This theory is not Morita equivalent to classical 
real algebraic geometry. Lezama and Latorre (2017) pro-
posed the semi-graded rings in 2017, which is a new type 
of non-commutative rings.
The semi-graded rings extend graded rings and skew 
Poincaré-Birkhoff-Witt (PBW) extensions. In addition, 
they prove some elementary properties of the generalized 
Hilbert series, Hilbert polynomial, and Gelfand-Kirillov 
dimension. Jason Bell et al. proposed an answer to wheth-
er the Poisson Dixmier-Moeglin equivalence holds for any 
complex affine Poisson algebra in 2017. They gave this 
answer using techniques from differential-algebraic geom-
etry and model theory (Bell, Launois, Sánchez, and Moo-
sa (2017)). Yunfeng Jiang and Yang Zhang et.al proposed 
a novel efficient method to count the number of solutions 
of Bethe ansatz equations based on the Gröbner basis and 
quotient ring in 2018. Also, they developed an analytical 
approach which is based on a companion matrix and re-
visited the completeness problem of Bethe ansatz of the 
Heisenberg spin chain to show the power of this method 
(Jiang and Zhang (2018)). Khan et al. proposed the proof 
of an analogue of the Morel-Voevodsky localization the-
orem over spectral algebraic spaces in 2019.  Also, they 
deduced a corollary which called “derived nilpotent-in-
variance” (Khan (2019)). Alain Connes et al. proposed a 
development in the affine case for general Segal’s Γ-ring 
in 2021, which unifies two approaches for a geometry un-
der Spec Z. To be more specific, the spectrum of an S-al-
gebra is in general a Grothendieck site and it is the natural 
domain for cyclic homology and for homological algebra 
(Connes and Consani (2021)). Blechschmidt (2021) et al. 
proposed the use of the internal language of toposes in al-
gebraic geometry.
This method can give simpler definitions and more con-
ceptual proofs in algebraic geometry. Also, due to the 
recent development of some abstractions in algebra and 
the special properties of rings. Ring theory has become 
popular in cryptography. Vadim Lyubashevsky
et al. proposed an algebraic variant of LWE called ring-
LWE and provided that it too enjoys very strong hardness 
guarantees in 2010. Ring-LWE can be used to resolve an 
open question which is introducing an algebraic variant 
of LWE called ring-LWE, and proving that it too enjoys 
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very strong hardness guarantees. Ring-LWE can optimize 
some applications of LWE to improve efficiency. Hence, 
the algebraic structure of ring-LWE might be able to lead 
to new cryptographic applications (Lyubashevsky, Peikert, 
and Regev (2010)). Areej M. Abduldaim et al. skew π-Ar-
mendariz rings which is an algebraic structure and they 
used these rings to design a neoteric algorithm for ze-
ro-knowledge proof in 2017. Also, they considered the se-
curity of algebraic cryptography systems which are based 
on non-commutative rings to ensure that it is impossible 
to solve the cryptography system in a practical amount of 
time (Abduldaim and Al-Saidi (2017)) Shahriar Ebrahimi 
et al. proposed InvRBLWE which is an optimized variant 
for binary learning with errors over the ring (Ring-LWE) 
scheme in 2019. InvRBLWE has been proven can be 
secure against quantum attacks and can improve the effi-
ciency of hardware implementations.
They also proposed two architectures for IneRBLWE 
which are scalable regarding security levels. Two differ-
ent ASIC implementations show improvement in speed, 
area, power, and energy. Moreover, they are the first to 
implement LWE-based cryptosystems on the ASIC plat-
form (Ebrahimi, Bayat-Sarmadi, and Mosanaei-Boorani 
(2019)). Shahriar Ebrahimi proposed a masking counter-
measure against a differential power analysis (DPA) at-
tack on lightweight implementations of binary Ring-LWE 
on hardware in 2020. The results show that DPA-secure 
implementations have lower than 14% performance over-
head and still satisfy practical on resource-constrained de-
vices. Besides, the results of experiments of FPGA imple-
mentation have more than 99% and 81% improvement in 
speed and efficiency compared to previous work (Ebrahimi 
and Bayat-Sarmadi (2020)). Zheng Zhiyong et al.
proposed ϕ-cyclic code in 2021, which may be regarded 
as a general form of the ordinary cyclic code and appli-
cations of extending two public key encryption schemes. 
One of these is the NtRu public key cryptosystem which 
is based on polynomial ring theory. Another one is McE-
liece and Niederriter’s cryptosystem which is based on 
error-correcting theory.
Those results provide a more general construction of 
NTRU based on ideal matrices and q-ary lattice theory 
(Zheng, Huang, Xu, and Tian (2021)).
In addition, ring theory also has a high relationship with 
linear algebra, such as the Laplacian matrix which can 
provide a computationally tractable solution to the graph 
partitioning problem. Pirzada, Rather, and Chishti (2021) 
proposed one method of obtaining the distance Laplacian 
spectrum of the zero divisor graphs Γ(Zn) for different 
values of n. Finally, it can determine that n for which zero 
divisor graph Γ(Zn) is distance Laplacian integral. Chatto-
padhyay, Patra, and Sahoo (2020) et al. proved that Γ(Zpt 
) is Laplacian integral for every prime p and positive inte-

ger t ≥ 2 in 2020. Pirzada et al.
found the signless Laplacian spectrum of the zero divisor 
graphs Γ(Zn) for various values of n in 2021. Also, they 
characterize n for which zero divisor graph Γ(Zn) are 
signless Laplacian integral (Pirzada, Rather, Shaban, and 
Merajuddin (2021)). Sarathy et  al. proposed the structure 
formation of the annihilator monic prime graph of com-
mutative rings and colour-based energy of the annihilator 
monic prime graph which is called colour distance sign-
less Laplacian energy in 2023. They also provided some 
applications of
color-based energy (Sarathy and Sankar (2023)). Shou-
qiang Shen et al. proposed the case that whenever n is an 
even number or an odd prime power, G(Zn) would be the 
Laplacian integral in 2023. They also characterize n that 
algebraic connectivity of G(Zn) coincides with the vertex 
connectivity (Shen, Liu, and Jin (2023)). Mohd Shariq et 
al. obtained the Laplacian spectrum of the weakly zero-di-
visor graph Γ(R) of the ring Zn in 2023. Also, they proved 
that WΓ(Zn) in Laplacian integral for arbitrary n (Shariq, 
Mathil, and Kumar (2023)).

Application of Ring Theory
Due to ring theory occupying the central role in abstract 
and the rapid development of computer science, there are 
more and more applications of ring theory in computer 
vision especially in image segmentation. Garcés, Torres, 
Pereira, and Rodríguez (2014) et al. proposed that a new 
index of similarity among images uses Zn rings and the 
entropy function in 2014. The analysis of the performance 
of the algorithm proved that the new index is a suitable 
tool for comparing images. Adhami and Brewer (1989) 
proposed a new ring theory-based algorithm and stopping 
criterion for image segmentation. This algorithm and 
stopping criterion using finite cyclic rings and matrices in 
Ring Theory can perform high-quality image segmenta-
tion for images that can be used in computer vision. Ad-
itya, Zulfikar, and Manik (2015) proposed an application 
program to test division rings and fields. This program can 
test algebraic structures more than manual ones and has 
accurate results. Torres, Rodriguez, Garcés, and Pereira 
(n.d.) et al. proposed a new method for edge detection in 
obtained images from the Mean Shift iterative algorithm 
in 2015. They introduced the Mean Shift Gradient Opera-
tor which uses ring units for edge detection and explained 
the importance of ring theory. Adhami and Brewer (1989) 
proposed a 2 × 3 convolution mask which is a cyclic ring 
of integers modulo 7. This mask can detect the edges of 
digital images.
The residue number system is a numeral system repre-
senting integers by their values modulo several pairwise 
coprime integers called the moduli which has a high re-
lationship with ring theory and number theory. Residue 
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number system can be used to improve the system or re-
duce cost. Cardarilli, Nannarelli, and Re (2007) proposed 
that the residue number theory (RNS) uses less power 
than the Two’s Complement System (TCS) counterpart. 
This result indicated that the use of residue number theory 
can reduce the cost of power consumption. Also, Valueva 
et al. (2020) proposed the use of RNS in the hardware part 
of convolutional neural network architecture to implement 
the convolutional layer of the neural network. The result 
of this application showed that using RNS can
reduce hardware cost by 7.86% to 37.78% compared to 
the two’s complement implementation. Chervyakov pro-
posed a framework of the convolutional neural network 
constructed with a residue number system for delay mini-
mization. Using this method could accelerate the work of 
the device by 37.4% as compared to using a binary num-
ber system and by 18.5% as compared to using a known 
residue number system realization (Chervyakov, Lyakhov, 
and Valueva (2017)).
The applications of ring theory in coding theory and cryp-
tography have grown significantly. Muthuraj and Gandhi 
(n.d.) proposed an application of HX ring theory in homo-
morphic encryption which is called HX homomorphic en-
cryption techniques. Using algorithms that run a sequence 
of mathematical operations can change the value of the 
numbers in a foreseeable way which can encrypt the infor-
mation. Galdino, Borges, Ayala-Rincón, et al. (2021) pro-
posed a PVS development of relevant results of the ring 
theory which provides the required elements to formalize 
important algebraic theorems.
Hence, the paper proposed the formalization of the gener-
al algebraic-theoretical version of the Chinese remainder 
theorem (CRT) for the theory of rings. Grigoriev proposed 
a homomorphic public-key cryptosystem over groups 
and rings. In addition, this homomorphic cryptosystem is 
designed for the first time over finite commutative rings 
(Grigoriev and Ponomarenko (2003)).
Besides, ring theory also has several other applications. 
Awange, Fukuda, Takemoto, and Grafarend (2005) pro-
posed several examples of geodetic problems solved alge-
braically. Those examples indicate that one of the advan-
tages of algebraic approaches is that they provide exact 
solutions to problems requiring closed-form approaches. 
Yichao He et al. proposed two evolution operators which 
are the global exploration operator and the local develop-
ment operator and a new algorithm called the Ring The-
ory-Based Evolutionary Algorithm in 2019. Using those 
operators and algorithms can solve the combinatorial 
optimization problem which also indicates using algebraic 
theory to design evolutionary algorithms is feasible and 
effective (He, Wang, and Gao (2019)). Ahmed et al.
proposed a new hybrid meta-heuristic FS model based on 
a well-known meta-heuristic Harmony Search (HS) algo-

rithm and a Ring Theory-based Evolutionary Algorithm 
(RTEA) in 2020, which was named Ring Theory-based 
Harmony Search (RTHS). Several results have proved the 
effectiveness of RTHS in solving Feature Selection prob-
lems.
Feature Selection is a significant pre-processing step in 
the fields of machine learning and data mining, which has 
a major impact on the performance of the corresponding 
learning models (Ahmed, Ghosh, Singh, Geem, and Sark-
ar (2020)).

Discussions
Mathematical Foundation
Ring theory has been developed for many applications in 
various research directions, among which we can selec-
tively have some of them as the proof process as part of 
our discussion. Here we select one of the most important 
progress to show our understanding, followed by the prac-
tical applications of ring theory. Snake Lemma is a sim-
ple and useful tool in homological algebra. It is used to 
construct long exact sequences and is valid in all Abelian 
categories (Lemmermeyer (2011)). We went through the 
whole process as the following (Bosch et al. (2013)).
Let

Figure 1
commutative diagram of R-module homomorphism with 
exact rows be a commutative diagram of R-module ho-
momorphisms with exact rows. Then the diagram extends 
uniquely to a commutative diagram 

Figure 2
extended commutative diagram
where the vertical sequences are just the canonical exact 
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sequences associated with
u1, u2, u3. Then we have:
(i) f 2  ◦ f 1  = 0 and g2   ◦ g1   = 0
(ii) If g1 is injective, the top upper row is exact.
(iii) If f2 is surjective, the bottom lower row is exact.
(iv) Let g1 be injective and f2 surjective. Then there exists 
an R-module homomorphism d: ker u3 −→ coker u1, the 

so-called morphism, defined as follows:
Starting with x3 ∈ ker u3 ⊂ M3, choose an f2-preimage x2 
⊂ M2 such that g1(y1) =u2(x2).  Now let d(x3) be the resi-
due class y¯1 of y1 in coker u1.
(v) In the setting of (iv), the exact sequences of (ii) and (iii) 
yield an exact sequence as follows:

Figure 3
the exact sequence from (ii), (iii) and (iv)
Proof. For any x1 ∈ ker u3, u2(f1(x1)) = g1(u1(x1)). Then 
f1(x1) ∈ ker u2. Thus, f1

restricts to an R-morphism f 1 :  ker u1 −→ ker u2.  Simi-
larly, we can get f 2  from restriction
of f2. Further more, we have g1(u1(M1)) = u2(f1(M1)), so 
g1(im u1) ⊂ im u2. In particular,
the R-homomorphism N1 →

g1  N2 −→ coker u2 has a ker-
nel containing im u1.  Then factorizes
uniquely over an R-homomorphism g¯1:  coker u1 −→ 
coker u2.  Similarly, we can obtain g¯2. Then we start to 
prove assertion (i). Since the row (†) and (††) are exact, 
f2 ◦ f1 =0 and g2 ◦ g1 = 0.  Then we get assertion (i) due to 
f   and f 2  are restrictions of f1 and f2, and g¯1 and g¯2 is 
factorized from g1 and g2.
To verify (ii), assume that g1 is injective.  Due to (i), ker f  
  ⊂ im f 2 .  Then we only need to show that ker f 2  ⊂ im 
f  .  For any x2 ∈ ker f 2  ⊂ ker f2 due to f 2  is restriction 
of f2. Since ker f2 ⊂ M2, x2 ∈ M. By the exactness of (†), 
there exist some x1 ∈ M1 such that f1(x1) = x2.  Then x1 ∈ 
ker u1.  Then f  (x1) = x2 will show x2, thus ker f 2  ⊂ im f  
.  Now x2 ∈ ker u2 implies g1(u1(x1)) = u2(f1(x1)) = u2(x2) = 
0. Since g1 is injective, we get
u1(x1) = 0. Hence, x1 ∈ ker u1.
Similarly, due to (i), we have im g¯1 ⊂ ker g¯2 for the as-
sertion (iii).  We only need to prove that ker g¯2 ⊂ im g¯1.  
We choose an element y¯2 ∈ ker g¯2, together with a rep-
resentative y2 ∈ N2.  Then the image g2(y2) is a represen-
tative of g¯2(y¯2) = 0.  Thus, g2(y2) ∈ im u3. We can find a 
u3-preimage x3 ∈ M3 of g2(y2). Since f2 was surjective, x3

admits an f2-preimage x2 ∈ M2.  Let y 2   = y2 − u2(x2) is a 
representative of y¯2.  Then,
g2(y 2  ) = g2(y2 − u2(x2)) = g2(y2) − g2(u2(x2)) = g2(y2) − 
u3(f2(x2)) = g2(y2) − u3(x3) = g2(y2) − g2(y2) = 0. But then, 
using the exactness of row (††), there is a g1-preimage y1 

∈ N1 of y 2 .  Writing y¯1 ∈ coker u1 for the associated 
residue class in coker u1, we get g¯1(y¯1) = y¯2.  There-
fore, y¯2 ∈ im g¯1 and we get that ker g¯2 ⊂ im g¯1, as 
desired.
Now assume the g1 is injective and f2 is surjective. We 
want to show that we can define an R-homomorphism d: 
ker u3 −→ coker u1, as specified in (iv). To do this, start
from an element x3 ∈ ker u3. By the surjectivity of f2, 
there exist an f2-preimage x2 ∈ M2.
By the exactness of (†) shown in (ii), the letter is unique 
up to an additive contribution from im f1. Then
g2(u2(x2)) = u3(f2(x2)) = u3(x3) = 0
and, using the exactness of (††), we get u2(x2) ∈ ker g2 = 
g1. Thus, u2(x2) admits a
g1-preimage y1 ∈ M1 where the latter depends uniquely on 
u2(x2), since g1 is injective. Since x2, as an f2-preimage of 
x3, is uniquely on x3 up to an additive contribution form im 
u1.  In any case, the residue class y¯1 ∈ coker u1, x3 −→ 
y¯1 , is well-defined.  It is clear that d satisfies the prop-
erties of an R-homomorphism, since d has been defined 
in terms of taking preimages and images with respect to 
R-homomorphism.
It remains to show that the sequence in (v) is exact at the 
places ker u3 and coker u  .  Let us start with the sequence 
ker u f 2     ker u3 →−d   coker u1.  We prove im f 1 ⊂ ker d 
at 2 first.  For any x3 ∈ im f 2  admits an f2-preimage x2 ∈ 
ker u2.  Then u2(x2) = 0.  In
particular, 0 ∈ N1 is a g1-preimage of u2(x2) and, hence, is 
a representative of d(x3) so that
d(x3) = 0.  We get f 2  ⊂ ker d.  Conversely, suppose x3 ∈ 
ker d.  Again, let x2 ∈ M2 be an
f2-preimage of x3 and y1 ∈ N1 a g1-preimage of u2(x2). 
Then, since x3 ∈ ker d, we have y1

∈ im u1 and there exists a u1-preimage x1 ∈ M1 of y1. 
Writing
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u2(f1(x1)) = g1(u1(x1)) = g1(y1) = u2(x2)
then u2(f1(x1) − x2) = u2(f1(x1)) − u2(x2) = 0, hence, x2 − 
f1(x1) ∈ ker u2. Therefore
x3 = f2(x2) = f2(x2) − f2(f1(x1)) = f2(x2 − f1(x1) ∈ im f 2
and, hence, ker d ⊂ im f 2 .  We have proved the sequence 
ker u2  f 2     ker u3 →−d   coker u1 is
exact.
Finally, let us discuss this the sequence ker u3 →−d

coker u1

g¯1

−→
coker u2. First, we
show im d ⊂ ker g¯1.  To do this, choose an element x3 ∈ 
ker u3 and let x2 ∈ M2 be an
f2-preimage of x3, as well as y1 ∈ N1 a g1-preimage of 
u2(x2). Then y1 is a representative of d(x3) and g1(y1) = 
u2(x2) ∈ im u2 a representative of g¯1(d(x3)).  But then 
g¯1(d(x3)) = 0 and we have im d ⊂ ker g¯1.  Conversely, 
consider an element y¯1 ∈ ker g¯1, together with a repre-
sentative y1 ∈ N1. Then we have g1(y1) ∈ im u2 and there 
is a u2-preimage x2 ∈ M2 of g1(y1). Observing the equation 
u3(f2(x2)) = g2(u2(x2)) = g2(g1(y1)) = 0, where we use
that g2 ◦ g1 = 0 due to the exactness of (††), we conclude 
x3 := f2(x2) ∈ ker u3 and see from the construction of x3 
taht d(x3) = y¯1.  Therefore y¯1 ∈ im d and, hence, ker g¯1 
⊂ im d.
We finished the proof of the exactness of the sequence ker 
u3 →−d

Hence, we have proved assertion (v).
coker u1

g¯1

−→
coker u2.
As shown in the proof above, we have successfully proved 
Snake Lemma. Based on this we can also discuss the re-
lated application side of this mathematical tool.

Applications of Ring Theory
Unlike those fancy names such as artificial intelligence or 
quantum computing, ring theory is not often mentioned in 
many literature and algorithms. However, as the founda-
tion of many related sub-algorithms or mathematical op-
erators. Many algorithms already have ring theory embed-
ded within them. This study would like to start with the 
most commonly and widely used applications, followed 
by more complicated algorithms in related areas.
• Filter Design
Filter as an engineering concept is often used everywhere. 
However, it has a broader definition in mathematics. A fil-
ter in a broad sense can be considered as a function map-
ping. Also, this mapping can be an arbitrary function that 

includes simple mathematical operators and also more 
complex such as convolution, integration, partial differen-
tiation, or even more complicated algorithms, including 
Fourier
transform, Laplacian transform, etc. The development 
of information processing, data mining, data cleaning, 
data extraction, and so on have corresponding complex 
algorithms but also need a lot of calculations. Hence, this 
study discovers that ring theory is more or less used in 
these algorithms due to all of these algorithms including 
linear calculations of the matrix. From this perspective, 
it can explore the mathematical, geometric, and algebraic 
implications of these algorithms.
• Matrix Factorization
Firstly, scholars will come across a lot of places where 
they need to do complex matrix factorization. For exam-
ple, when doing segmentation of time-series data, scholars 
usually construct a self-similarity matrix (SSM) at first. 
For example, if 10321 is an original signal in which there 
are 5 numbers, the corresponding
self-similarity matrix will be a 5 × 5 matrix. Since the first 
number of signals is 1, the final row is  1 × 1 1 × 0 1 × 3 1 
× 2 1 × 1  which is equal to  1 0 3 2 1 Similarly, the 4th 
row, 3th row, 2nd  row and 1st  row are got. Hence, people 

get the 
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Firstly, scholars will come across a lot of places where they need to do complex 

matrix factorization. For example, when doing segmentation of time-series data, 

scholars usually construct a self-similarity matrix (SSM) at first. For example, if 

10321 is an original signal in which there are 5 numbers, the corresponding 

self-similarity matrix will be a 5 × 5 matrix. Since the first number of signals is 1, the 

final row is
  

1 × 1 1 × 0 1 × 3 1 × 2 1 × 1
  

which is equal to
  

1 0 3 2 1 
 

 
Similarly, the 4th row, 3th row, 2nd  row and 1st  row are got. Hence, people get the 

 1   0   3   2 1  

self-similarity matrix of the original signal  3 0   9   6 3  . Then this matrix can 

1 0 3   2   1 
be factorized. There are many ways to do matrix factorization. Hence, based on 

math foundation and ring theory, Laplacian Structural Decomposition (LSD) is one 

of the methods which has been used more and is relatively effective recently. From 

this, corresponding eigenvectors and eigenvalues are obtained, and scholars can use 

them to do clustering to complete the final segmentation task. 

• Chinese Remainder Theorem 

When having a very large number needed to calculate, people usually can calculate 

directly. However, the ways of computer to calculate is different from people’s. 

 be factorized. There are many 

ways to do matrix factorization. Hence, based on math 
foundation and ring theory, Laplacian Structural Decom-
position (LSD) is one of the methods which has been used 
more and is relatively effective recently. From this, corre-
sponding eigenvectors and eigenvalues are obtained, and 
scholars can use them to do clustering to complete the fi-
nal segmentation task.
• Chinese Remainder Theorem
When having a very large number needed to calculate, 
people usually can calculate directly. However, the ways 
of computer to calculate is different from people’s.
Researchers discovered that if using a computer to cal-
culate a lot of large numbers, the rate of calculating may 
decrease. Hence, people can use the Chinese Remainder 
Theorem to develop an algorithm that is similar to the res-
idue number system.
Based on ring theory, people can use a better way to 
change complex number to simple number (in remainder 
form), which lead to us getting relatively complex results 
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from calculating the simple number.
When people use ring theory to calculate, regardless of 
any mathematical operator, they will need to use addition 
and multiplication. Hence, researchers will focus on those 
two particular tasks to design the connection of the logic 
circuit gate in designing and developing the chip, just like 
the filter operation from the previous section.

Conclusion
This paper summarizes previous results that are related to 
ring theory and its application to fill the gap in this area. 
Besides, it is deeply discussed the mathematical founda-
tion and the corresponding applications of ring theory in 
discussion. Corresponding further studies are proposed 
below.
However, there are also some limitations of this paper. 
Firstly, ring theory originated from algebra. Therefore, 
when the researcher looked for articles, she may more or 
less use some articles related to algebra, but not only in-
troduce ring theory. In addition, there will be slightly few-
er articles in the field of mathematics. Hence, when the 
researcher searched for articles, she found more articles 
about the applications and some areas that are related to 
ring theory. These articles may not be so closely related to 
ring theory.
There are some further studies. Ring theory can be applied 
in many areas, including information encoding based on 
information theory (encryption), also in the communica-
tion area, and information flow across devices. Another 
potential research area could be the evaluation function 
or the loss function when evaluating the machine learning 
models or
simply the pre-processing data before feeding into the 
model, like the sound processing in the natural language 
processing area.
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