
Dean&Francis

Design and Implementation of a Synchronous AHB to APB Bridge in 
System-on-Chip Applications

Hongjin Chen

Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
Corresponding author: 2720611@student.gla.ac.uk

Abstract:
The requirement of effectively combining key units in an integrated system is proliferating. SoC system is developed to 
provide a chip-level integration, which become the inevitable trend of integrated circuit development and is widely used 
in smartphones, industrial applications, and microcontrollers. The ARM AMBA protocol works as a universally adopted 
way of interaction between various parts of the system. In AMBA architecture, the AHB to APB bridge significantly 
contributes to combining the high-performance AHB bus and low-power APB bus in the SoC system. This project is to 
implement an AHB to APB bridge using Verilog, enabling stable data transfer between these two buses. The proposed 
AHB to APB bridge is intended to fit different read or write strategies and ensure the proper working of the peripherals 
on the APB bus. The bridge has been implemented via Verilog Hardware description language (HDL). A test bench was 
created with a virtual AHB host and an optimized SRAM as the high-speed APB peripheral. Verdi simulation shows the 
bridge completely meets the design intention.
Keywords: AHB to APB Bridge; System-on-chip (SoC); AMBA Protocol.

1. Introduction
As the demand for miniaturization in electronic devices 
increases, SoC (System on Chip) systems are employed 
to provide higher integration, resulting in lower power 
consumption, reduced costs, and enhanced reliability. In 
an SoC, the quality of interaction and communication be-
tween functional blocks is often fundamental to the proper 
operation of the system [1]. The Advanced Microcontrol-
ler Bus Architecture (AMBA) is an open standard provid-
ed by ARM to connect and manage functional blocks in 
an SoC system [2]. It facilitates the right-first-time devel-
opment of multiprocessor designs, with large numbers of 
controllers and peripherals. This protocol has persisted as 
a universally adopted open standard for nearly 30 years. 
Up to AMBA5, the AMBA protocol has mainly encom-
passed ACE, CHI, AXI, AHB, APB, ATB, CXS, ATP, 
DTI, LTI, and LPI [3]. Among these, the AHB and APB 
stand out as two widely used and efficient buses, serving 
as the backbone buses for basic high-speed and low-speed 
operations, respectively.
The AMBA Advanced High Performance Bus (AHB) 
supports multiple bus masters and high bandwidths oper-
ations [4]. It is the most widely used interface protocol for 
ARM Cortex-M Processors and often serves as the prima-
ry bus in SoCs, which helps connect processors, caches, 

DMA controllers, and other high-frequency, high-perfor-
mance components [3]. Another famous interface protocol 
that often works with AHB is APB, the AMBA Advanced 
Peripheral Bus (APB) is a low-bandwidth bus, which 
features a compact size and low power consumption [5]. 
It typically provides connections to low-speed communi-
cation protocols such as UART, SPI, IIC, and other low-
speed, low-power IO devices.
The synergy between AHB and APB allows the system 
to maintain high speed and performance while reducing 
power consumption and complexity of peripheral devic-
es and IOs, ultimately lowering system costs. Given this 
context, a channel connecting the AHB and APB buses 
becomes an essential component for ensuring stable and 
efficient system operation.
The AHB to APB bridge serves as a transfer between AHB 
and APB buses shown in Fig.1, realizing data exchange 
between the two buses and enabling connections between 
AHB master devices and APB slave devices. Its primary 
function is to expand multiple low-level ports to help op-
timize the overall performance and power consumption of 
the SoC system. The AHB to APB bridge works as a slave 
device in the AHB bus. However, the bridge acts as the 
sole master in the APB bus, responsible for activating and 
selecting APB sub-devices, and managing data transfers.

ISSN 2959-6157 

1



Dean&Francis

Fig. 1 AMBA Architectural Plan [3]
There are two types of bridges: synchronous and asyn-
chronous. The APB bus clock is controlled by the PCLK-
EN signal, leading the synchronous bridges operating with 
the same clock source and aligned phase. This character 
allows synchronous bridges to change operating frequen-
cies for various APB sub-devices. In asynchronous scenar-
ios, the clock of the APB bus is not controlled by the AHB 
devices, which means it is easy to cause a metastable 
state due to phase unaligned. Therefore, the asynchronous 
bridges require additional synchronization across clock 
domains.

2. Literature Survey
The concept of the AHB to APB bridge was introduced 
alongside the APB bus in the AMBA2 protocol. Over the 
years, extensive research has been conducted in this field, 
including various power optimization designs, diverse ver-
ification methodologies, and designs for connecting other 
high-speed buses to the APB bus. Additionally, updates to 
the design have been made in response to iterations of the 
AMBA protocol. In paper [1] a design and implementa-
tion of a standard AHB to APB bridge that allows integra-
tion of different buses in a SoC. It provides a performance 
analysis under various clock configurations by synthesis 
and simulation with System Verilog and Modelsim. The 
author [6] realized FPGA implementation by checking 
operation results with the chipscope tool. Compared with 
software implementation, this method allows easy testing 
and optimization through error testing and debugging. 
The paper [7] discusses the way of using UVM (Universal 
Verification Methodology) to enhance the efficiency and 
effect of the AHB to APB bridge implementation. The 
simulation results demonstrated the effectiveness of the 

bridge and obtained 100% function coverage. The author 
[8] designed an IP (Intellectual Property) core of APB 
bridge, which extends the bridge support to AXI bus, and 
facilitates the bridge to support other AMBA high-perfor-
mance buses. The paper [9] focuses on layout design to 
reduce the power consumption and area usage of the AHB 
to APB bridge in SoC. By using Cadence SoC Encounter 
in TSMC 180 nm technology, the designed asynchronous 
bridge under APB3 specification saves 6% power and 
10% area over the one with APB2 specification.
The difference between synchronous and asynchronous 
AHB to APB bridges lies in whether the clock domains 
are consistent. Synchronous bridges can typically be 
achieved using FSM (finite state machines) and registers. 
They allow the APB bus to have variable frequencies for 
different endpoint devices, which offer high performance, 
flexibility, and module isolation [10]. Asynchronous 
bridges typically use asynchronous FIFO or handshake 
signalling methods to realize information transfer between 
different clock domains. These approaches enhance sys-
tem compatibility and reduce data loss or errors during 
transmission [1].

3. Methodology and Technical Founda-
tions
3.1 Interface Overview
In the design of the bridge, careful consideration must 
first be given to its inputs and outputs. As illustrated in 
Fig.2, the bridge acts as a slave to the AHB bus, necessi-
tating the inclusion of all typical inputs expected from an 
AHB slave device: data, address, clock, control signals, 
and others. Simultaneously serving as a master to the APB 
bus, its inputs encompass read data from APB during read 

2



Dean&Francis

processes, along with fundamental Reset signals.

Fig. 2 AHB Signal Interface of an AHB Slave [3]
Fig.3 indicates the output interfaces of the bridge. Its 
outputs primarily consist of signals essential for APB bus 
read or write operations: chip select, data, address, con-
trol, and clock signals, all directly connected to the APB 
bus for slave device usage. Since the AHB to APB bridge 

remains an AHB slave device, it must also generate feed-
back signals on the AHB bus, such as HREADYOUT and 
HRESP, crucial for AHB bus masters to monitor the cur-
rent transfer status of the bridge and handle special states 
like Busy or Error.

Fig. 3 APB Signal Interface of an APB Bridge [5]
3.2 State Machine
The state machine of the AHB to APB bridge consists 
of seven states: ST_IDLE, ST_APB_TRNF, ST_APB_
TRNF2, ST_APB_WAIT, ST_APB_ENDOK, ST_APB_
ERR1, and ST_APB_ERR2. As depicted in Fig.4, transi-
tions between these states are indicated by green lines for 
normal transitions, yellow lines for special cases prevent-
ing deadlock, and red lines for error states.
1) ST_IDLE: it is a state where the bridge waits for sig-
nals, effectively representing an idle state. When the 
APB clock’s rising edge occurs (PCLKEN active) and 
apb_select is high, meeting the conditions for read or 
non-buffered write operations, the state transitions to ST_
APB_TRNF; otherwise, it remains in the IDLE state. If a 
buffered write operation is required (apb_select high), the 
state transitions to ST_APB_WAIT; otherwise, it contin-

ues to maintain the IDLE state.
2) ST_APB_WAIT: in this state, it waits for the next APB 
clock and is responsible for holding data for one clock be-
fore outputting it. Upon arrival of the next APB clock, the 
state transitions to ST_APB_TRNF to complete the buff-
ering task; otherwise, it continues to remain in the WAIT 
state.
3) ST_APB_TRNF: This state establishes the transfer 
state. If an APB clock arrives, the state transitions to ST_
APB_TRNF2; otherwise, it continues to maintain the 
TRNF state.
4) ST_APB_TRNF2: it is the transfer state that continues 
until the transfer is completed. When triggered by a clock 
(APB clock), if the PSLVEER error signal is low and 
PREADY transfer completion signal is high, indicating 
data needs buffering for one cycle, the state transitions to 
ST_APB_ENDOK; otherwise, it continues to maintain the 

3



Dean&Francis

TRNF2 state. If no buffering is needed and apb_select is 
high, indicating subsequent transfers, the state transitions 
to ST_APB_WAIT. If no buffering is needed and apb_
select is low, indicating no subsequent transfers, the state 
transitions to ST_IDLE. When triggered by a clock (APB 
clock), if PREADY is high and PSLVEER is high, indicat-
ing an error condition, the state transitions to ST_APB_
ERR1; otherwise, it continues to maintain the TRNF2 
state.
5) ST_APB_ENDOK: the end state indicating comple-
tion of the current transfer task. Upon the rising edge of 
the next APB clock (PCLKEN active) and apb_select 
is high, meeting the conditions for read or non-buffered 
write operations, the state transitions to ST_APB_TRNF; 
otherwise, it transitions to ST_IDLE. If a buffered write 
operation is required (apb_select high), the state transi-
tions to ST_APB_WAIT; otherwise, it transitions to ST_
IDLE. This state behaves similarly to ST_IDLE, differing 

only when no conditions are met upon arrival of the next 
APB clock, in which case it transitions back to ST_IDLE 
to await the same detection conditions.
6) ST_APB_ERR1: an error state allowing the AHB mas-
ter to decide whether to cancel or continue the transfer. 
Upon the arrival of the next AHB clock, it directly transi-
tions to ST_APB_ERR2.
7) ST_APB_ERR2: an error state where subsequent state 
transitions depend on the handling decision made by the 
AHB master (reflected in bus changes). Upon the rising 
edge of the next APB clock (PCLKEN active) and apb_
select is high, meeting the conditions for read or non-buff-
ered write operations, the state transitions to ST_APB_
TRNF; otherwise, it transitions to ST_IDLE. If a buffered 
write operation is required (apb_select high), the state 
transitions to ST_APB_WAIT; otherwise, it transitions to 
ST_IDLE. The subsequent state transition behavior of this 
state is identical to that of ST_APB_ENDOK.

Fig. 4 State Machine of the Bridge
(Picture credit: Original)

4. Application Scenarios for AHB to 
APB Bridge
ST-Microelectronics is one of the top 10 semiconductor 
companies, which is famous for its MCU, sensors, RF & 
wireless chips. There 32-bit MCU STM32 microcontrol-
lers are widely used in various embedded systems and 
electric devices, such as PLC (Programmable Logic Con-
troller), smart outlets, vehicle collision warning systems, 
and heart rate monitors. As STM32 microcontrollers are 

based on ARM Cortex-M series processors, AHB buses 
work as the primary bus in the SoC system.
In STM32 microcontroller, it has a 32-bit bus matrix to 
handle access and efficient operation when high-speed pe-
ripherals work simultaneously. However, this bus matrix 
is a multi-layer AHB bus matrix, means we could roughly 
consider it as a huge AHB bus that data can be transferred 
to all endpoints since the AHB to APB bridge uploads 
data. STM32 microcontrollers usually have 2 configurable 
AHB to APB bridges, its frequency and endpoint IO ports 
are changeable due to configuration [11].

4



Dean&Francis

As the official diagram shown in Fig.5, the AHB to APB 
bridge take all the APB endpoints, responsible for ana-
logue-digital signal conversion, serial port communica-
tion, and PWM generation. After receiving data, command 
signal or address signal from the AHB system bus, the 
AHB to APB bridge select and sends relative information 
to peripheral endpoints. When uploaded, the AHB to APB 
bridge load the information to the AHB bus. The bridge 

here isolates the peripheral endpoints from the high-per-
formance AHB bus matrix, providing the MCU low-pow-
er/low-voltage operation, connectivity, and real-time 
capabilities, while maintaining full integration and ease of 
development [11]. Therefore, the success of the STM32 
MCU is inseparable from the outstanding contribution of 
AHB to APB Bridge.

Fig. 5 System Architecture of the STM32F1 Family [11]

5. Validation Design and Simulation 
Results
The design and the validation are done with Verilog and 
System Verilog. A virtual AHB master is built to generate 
all correct functional signals and random transmission 
data. The APB slave here is an optimized SRAM used 
for read and write operations. SRAM was optimized to a 
timing sequential read/write state, and the data input and 
output were stored until the next clock. Consequently, the 
data always needs to wait for the next clock in both input 
and output operations. The designed AHB2APB bridge is 
a universal configurable bridge that supports four opera-
tional modes: direct read, direct write, buffered read, and 
buffered write. By configuring REGISTER_RDATA or 
REGISTER_WDATA, different read/write strategies can 
be implemented in circuits. Result Waveforms are drawn 
by WaveDrom editor, with simulation data by Verdi. Only 
the two most complicated operation modes, buffered read 
and buffered write results with key parameters are shown 

in the diagram.

5.1 Read Process in Buffered Mode
As illustrated in Fig.6, the read task occurs when 
HWRITE signal is low. Following the output of HADDR 
to the address, it passes through the bridge into the APB 
bus. After the state machine jumps to 3 and adding anoth-
er clock, the first data is delivered, subsequently stored in 
PRDATA upon the arrival of the next APB clock. After 
another APB clock cycle, PRDATA enters the AHB to 
APB bridge and is held in the bridge’s read/write registers. 
Simultaneously, the data is directly assigned to HRDATA, 
facilitating its entry into the AHB bus. The entire system 
operates read operations in a manner of address assign-
ment, data retrieval, internal storage within the bridge, 
and mounting onto the AHB bus. Simulation results com-
prehensively demonstrate the complete process from the 
initiation of a read operation to the data entering the AHB 
bus, without errors in each data transfer cycle.

5



Dean&Francis

Fig. 6 Read Process Validation Waveform Diagram
(Picture credit: Original)
In addition, typically, the Pready signal should rise as 
PENABLE rises. However, SRAM here is optimized to 
wait for the clock, which leads SRAM to output data one 
clock after PENABLE is raised. Buffered output caused 
the Pready signal rise one clock after SRAM output, 
which means the Pready here is two clocks later than 
typical conditions. The optimized system ensures that the 
APB bus can support high speed operation of the whole 
system without issues.

5.2 Write Process in Buffered Mode
As depicted in the Fig.7, the bridge operates in write 
mode when the HWRITE signal is high. Initially, HADDR 
provides the target SRAM address, followed by the data 
at the subsequent address. The data enters the AHB2APB 

bridge and is stored in its read/write registers upon the 
arrival of the next APB clock cycle. After another APB 
clock arrives, the data enters the APB bus and is received 
by the SRAM. In SRAM, the address needs to follow 
32bits alignment, which must remove the last 2 bits of 
the address received, leading the address of the SRAM 
operational is not equal to the one AHB device provided. 
The entire system executes read operations in manner of 
address assignment, data retrieval, internal storage within 
the bridge, and mounting onto the APB bus. Simulation 
results comprehensively illustrate the entire process from 
the initiation of a write operation to the data entering the 
APB bus, without errors in each data transfer cycle. This 
ensures accurate communication from the high-speed 
AHB bus to the low-speed APB bus.

Fig. 7 Write Process Validation Waveform Diagram
(Picture credit: Original)

6. Conclusion
The AHB to APB bridge is widely used in high-perfor-
mance SoC systems. In this paper, to give an architecture 
overview, a theoretical AHB to APB interface and a de-
signed state machine is shown as the foundation of the de-
sign. An example of the architecture of the STM32F fam-
ily is shown to explain how the bridge is utilized in the 
real SoC system. The designed AHB to APB bridge has 
been verified by using suitable test benches. Waveform 
has validated its function of data transmission between 
AHB bus and APB bus and demonstrated the operation of 
the AHB to APB bridge required in AMBA protocol. The 
bridge provides effective communication means for sys-
tem stability, and it is a universal configurable bridge that 
supports different read/write strategies in circuits. This 
adaptability allows the bridge to increase pipelining struc-

tures in high-delay scenarios or perform direct read/write 
operations in low-delay situations, thereby enhancing the 
overall performance of the SoC system.

References
[1] RM, Vani and Roopa, M. Design of AMBA based AHB2APB 
bridge. IJCSNS, 2010, 10(11): 14.
[2] Flynn, D. AMBA: enabling reusable on-chip designs. IEEE 
Micro, 1997, 17(4): 20-27.
[3] Arm Ltd. AMBA Specifications. ARM IHI0011a, 2002. 
Available: https://developer.arm.com/documentation/ihi0011/a/.
[4] Arm Ltd. AMBA AHB Protocol Specification. ARM 
IHI 0033C, 2021. Available: https://developer.arm.com/
documentation/ihi0033/latest/.
[5] Arm Ltd. AMBA APB Protocol Specification. ARM 
IHI 0024E, 2023. Available: https://developer.arm.com/
documentation/ihi0024/latest/
[6] Aithal, Sowmya and Baligar, JS and Guruprasad, SP. FPGA 

6



Dean&Francis

implementation of AHB to APB protocol. International Journal 
Of Engineering And Computer Science, 2016, 5(5): 16617-
16619.
[7] Kiran, Ankem and Thrimurthulu, V. Verification of AMBA 
AHB2APB bridge using universal verification methodology 
(UVM). International Journal in IT \& Engineering, 2016, 4(12): 
1-10.
[8] Ma, Chenghai and Liu, Zhijun and Ma, Xiaoyue. Design 
and implementation of APB bridge based on AMBA 4.0. 
2011 International Conference on Consumer Electronics, 
Communications and Networks (CECNet), 2011, 193-196.
[9] Paunikar, Abhijeet and Gavankar, Rohan and Umarikar, 
Nachiket and Sivasankaran, K. Design and implementation of 

area efficient, low power AMBA-APB Bridge for SoC. 2014 
International Conference on Green Computing Communication 
and Electrical Engineering (ICGCCEE), 2014, 1-6.
[10] Dubois, M. and Savaria, Y. and Bois, G. A generic AHB 
bus for implementing high-speed locally synchronous islands. 
Proceedings. IEEE SoutheastCon, 2005, 11-16.
[11] STMicroelectronics. STM32F101xx, STM32F102xx, 
STM32F103xx, STM32F105xx and STM32F107xx advanced 
Arm®-based 32-bit MCUs. RM0008 Reference manual, 
2021. Available: https://www.st.com/resource/en/reference_
manual/rm0008-stm32f101xx-stm32f102xx-stm32f103xx-
stm32f105xx-and-stm32f107xx-advanced-armbased-32bit-
mcus-stmicroelectronics.pdf.

7




