
Dean&Francis

Design and Implementation of a Width-Adjustable Asynchronous 
FIFO for Cross-Clock Domain Data Transmission

Suyu Cheng *

Department of Future Science and Engineering, Soochow University, Suzhou, 215222, China
*2128411001@stu.suda.edu.cn

Abstract:
Existing research shows that asynchronous FIFO has been widely used in a variety of complex system designs, such as 
FPGA-based image processing systems, USB communication systems, and so on. To make the designed asynchronous 
FIFO more programmable and flexible, so that it can adapt to various application scenarios more quickly, this paper 
studies and designs an asynchronous FIFO with adjustable input and output bit width. In this study, according to the 
relationship between 24-bit input data and 32-bit storage space, four 24-bit data are selected to fill three RAM storage 
spaces at one time. According to the multiple relationships between 32-bit storage space and 128-bit output data, the 
reading pointer is enlarged by 4 times to realize the function of reading four 32-bit data at one time. This whole process 
realizes the conversion of data bit width through data splicing. Finally, the 24-bit RGB888 image data is successfully 
converted into 128-bit data and transmitted to the bus, which successfully solves the problem of data width mismatch.
Keywords: Asynchronous fifo; Metastable state; Gray code.

1. Introduction
Existing research shows that asynchronous FIFO has 
been widely used in a variety of complex system designs, 
such as FPGA-based image processing systems, USB 
communication systems, and so on. To make the designed 
asynchronous FIFO more programmable and flexible, so 
that it can adapt to various application scenarios more 
quickly, this paper studies and designs an asynchronous 
FIFO with adjustable input and output bit width. In this 
study, according to the relationship between 24-bit input 
data and 32-bit storage space, four 24-bit data are selected 
to fill three RAM storage spaces at one time. According 
to the multiple relationships between 32-bit storage space 
and 128-bit output data, the reading pointer is enlarged by 
4 times to realize the function of reading four 32-bit data 
at one time. This whole process realizes the conversion 
of data bit width through data splicing. Finally, the 24-bit 
RGB888 image data is successfully converted into 128-bit 
data and transmitted to the bus, which successfully solves 
the problem of data width mismatch.

2. Research Background
Asynchronous FIFO ( First In First Out ) is a first-in, first-
out data buffer. Its read-and-write clocks are independent 
of each other, which is different from ordinary memory. It 
has no external read-and-write address lines. It can only 

read and write data in a certain order, and manage the data 
storage location through read and write pointers. In the 
process of data transmission across clock domains, due to 
the differences in frequency and phase between different 
clock domains, direct data transmission may lead to data 
loss. The use of asynchronous FIFO can effectively isolate 
different clock domains, to ensure the correct data trans-
mission across clock domains. Because of the above char-
acteristics, asynchronous FIFO is widely used in network 
interfaces, image processing, and other fields. In 1991, 
under the background of the increasing demand for data 
transmission between different clock domains in digital 
systems, Clifford E. Cummings proposed the concept of 
asynchronous FIFO. By using Gray code to convert bina-
ry pointers, the empty and full conditions can be directly 
judged. These studies still provide valuable theoretical 
guidance for modern cross-clock domain design, making 
asynchronous FIFO an important tool in digital system 
design. Next, I will first analyze the existing asynchro-
nous FIFO research, and then analyze the asynchronous 
FIFO structure with adjustable input and output bit width 
designed by me, and then explain its application scenarios 
and detailed workflow. Finally, the advantages and future 
directions of this design are analyzed.

3. Literature Review
At present, there has been a lot of research based on asyn-

ISSN 2959-6157�

1



Dean&Francis

chronous FIFO. Aiming at the problem of output skew 
caused by unaligned data sources when multiple chips 
work at the same time, an asynchronous FIFO circuit with 
controllable delay is designed. The delay control module 
is added while realizing data transmission across the clock 
domain. The integer delay control is realized by adjust-
ing the difference between the read pointer and the write 
pointer, and the high-precision decimal delay control is 
realized by adjusting the phase difference between the 
read clock and the write clock [1]. In the aerospace field, 
due to the existence of high-energy particles at high alti-
tudes, the asynchronous FIFO will produce single-particle 
flipping, which will cause dysfunction. A new triple-mod-
ule redundancy scheme can be used to quickly correct 
pointer errors and synchronize three redundant data, so 
as to achieve better single-particle protection effect [2] 
; in order to meet the growing demand for fast access 
to Ethernet, the researchers use 0.18μm CMOS process 
design, the use of dual-port 8T structure to replace the 
memory, the use of latch amplifier and pre-charge tech-
nology to amplify the small signal on the bit line to design 
a high-speed asynchronous FIFO suitable for 100Gbit / s 
Ethernet PCS [3] ; In order to solve the problem of FIFO 
caching the whole frame data, the read and write enable of 
FIFO is built according to the BRAM block, and the gen-
eration and verification of read and write signals and emp-
ty and full signals are controlled to ensure that the Internet 
data frame is not lost in the case of large throughput [4] ; 
for the 32-bit floating-point DSP project, in order to match 
the peripherals and the CPU operating frequency to avoid 
the CPU in the waiting state and waste of resources, the 
researchers chose to use asynchronous FIFO to match the 
speed difference between the low-speed peripherals and 
the high-speed CPU [5]. It can be seen from the above ap-
plications that FIFO plays a very important role in various 
fields such as matching peripherals with different speeds, 
improving data transmission efficiency, controlling data 
transmission delay, caching, and data buffering. It is an 
indispensable key component in modern digital circuit de-
sign.
Gray code has always played a crucial role in the design of 
asynchronous FIFO. In the design of asynchronous FIFO 
based on Gray code, the generation of flag signal is accu-
rately designed by comparing the read and write addresses 
to generate the correct empty and full flags and then syn-
chronize to the corresponding clock domain. The use of 
the Gray code can effectively reduce the probability of a 
metastable state. In addition, the Gray code is compared 
with the single-step cyclic code. It is found that the use of 
Gray code can improve the stability of the system, but it 
will inevitably require more logic units, resulting in more 
transmission delay [6]. In addition, some researchers use 

Gray code as the pointer of asynchronous FIFO and com-
pare it with the scheme of traditional binary code to repre-
sent the pointer. It is found that Gray code can effectively 
suppress the metastable state and make the performance 
of asynchronous FIFO more stable [7]. More researchers 
have proposed four design schemes based on Gray code, 
shift code, state flag, and interval address for the two key 
difficulties of metastable phenomenon and empty state 
judgment in asynchronous FIFO design. After compari-
son, it is found that the number of logic devices used in 
different design schemes is quite different. Among them, 
the number of devices used in asynchronous FIFO based 
on Gray code is the least, and the metastable phenomenon 
has also been effectively suppressed [8]. Combined with 
the above research, it can be seen that the method of using 
Gray code to represent the pointer has an effective inhib-
itory effect on the metastable state, and the required logic 
device is significantly reduced compared with the shift 
code. At the same time, because there is only 1 bit change 
between adjacent Gray codes, the multi-bit address is con-
verted into Gray code, which greatly simplifies the pro-
cessing across the clock domain. Although the advantages 
of asynchronous FIFO based on Gray code are very obvi-
ous, its shortcomings can not be ignored. In some cases, 
additional logic is required to convert and synchronize the 
Gray code, resulting in a slower average data transmission 
rate. When the depth of the FIFO is not a power of 2, the 
continuity of the Gray code is destroyed. Although this 
problem can be solved, it still brings a waste of resources. 
In addition, the complexity of the design and implementa-
tion of the Gray code itself cannot be ignored.
Metastability means that under certain conditions, the 
system is in a state between a stable state and an unstable 
state, and its duration cannot be determined. In digital 
circuits, the metastable state usually means that a trigger 
cannot reach a certain state within a specified time. Stud-
ies have shown that the influence of the metastable state 
on the system is mainly manifested in two aspects. One 
is that in the multi-fanout circuit, due to the difference in 
propagation delay, the load end identifies different logical 
levels, resulting in logical misjudgment; the other is the 
case where the output voltage is between the logic levels 
0 and 1 [9]. Since the metastable state cannot be avoided, 
how to alleviate the metastable state has become the key 
to research. Since the cross-clock domain is often in-
volved in FPGA design, researchers propose a cross-clock 
domain signal synchronization method based on trigger 
cascade for single bit level signal, pulse signal, and edge 
signal. For parallel signals, a cross-clock domain synchro-
nization method combining asynchronous FIFO and hand-
shake protocol is proposed, which successfully realizes 
cross-clock domain signal synchronization and greatly 

2



Dean&Francis

alleviates the generation of metastability [10]. In addition 
to the metastability processing across the clock domain, 
researchers have explored the single clock domain meta-
stability processing. Under the condition of a single clock 
domain, only the establishment / hold time margin of the 
trigger needs to be judged. If the establishment time of the 
subsequent trigger is insufficient, the trigger can be insert-
ed between the two triggers to solve the problem [11].

4. Methods Technical Model Basis
The asynchronous FIFO structure designed in this study 
is shown in Figure 1. The numbers in the middle brack-
ets in the picture represent the bit width of the data. It 
can be seen from the figure that the entire asynchronous 
FIFO structure (asyc_fifo) can be roughly divided into 
three parts. The first part is the data conversion module 
1, whose function is to convert the input data din with a 
bit width of 24 into 32-bit write data. The second part is a 
32-bit dual-port RAM located in the middle of the image. 
The third part is the data conversion module 2, which is 
located on the right side of the picture. Its main function 
is to convert the 32-bit data stored in the dual-port RAM 
into 128-bit output data; in addition to the input data and 
output data, many other signals can be seen from the fig-

ure. For example, read clock signal din_clk, write clock 
signal dout_clk, write enable signal din_en, read enable 
signal dout_en, read empty signal empty, write full signal 
full and an additional programmable full signal prog _ 
full. The read clock signal dout_clk and the write clock 
signal din_clk determine the clock frequency of the read 
and write operation, respectively. The read-enabled signal 
dout_en and the write-enabled signal din_en determine 
whether to perform the read and write operation. Only 
when the write-enabled signal or read-enabled signal is 
1, the asynchronous FIFO will perform the read or write 
operation. When the storage space in the dual-port RAM 
is insufficient, it will make the write signal output high 
level. When the data in the dual-port RAM cannot meet 
the needs of a read operation, it will make the read empty 
signal output low level. It can be seen from the figure that 
in addition to the asyc_fifo module located in the center, 
there is a Vcam module and bus module on the left and 
right sides respectively. The Vcam module is a virtual 
camera, which is responsible for providing 24-bit image 
data as input data into asynchronous FIFO. The bus mod-
ule represents a bus with a bit width of 128 bits. Its main 
function is to receive the output signal and transmit it to 
the host computer.

Fig. 1 Input and output adjustable asynchronous FIFO structure
Picture credit : Original
Gray code is a special binary coding method. Its main fea-
ture is that there is only one bit of binary number between 
two adjacent Gray codes, and there is only one bit of bi-
nary number between its maximum number and minimum 
number. Gray code is a kind of unweighted code. Each 
bit of it has no fixed weight, so it will be more reliable 
than BCD code in some specific situations. The encoding 
rules of the binary code are shown in Figure 2. From the 
diagram, it can be seen that the highest bit of Gray code 
remains unchanged compared with its original corre-

sponding binary code, while the second high bit is the re-
sult of the XOR operation between the highest bit and the 
second high bit of the binary code corresponding to the 
Gray code. It is precise because of the characteristic that 
there is only a one-bit difference between two adjacent 
numbers. When the multi-bit signal is transmitted across 
the clock domain, after the pointer is represented by the 
Gray code, even if the metastable state occurs, only one 
bit will be affected. Only two possibilities are returning 
to the previous state or correctly entering the next state. 
Even if returning to the previous state, it will only bring a 

3



Dean&Francis

certain delay without affecting its function. In summary, 
Gray code significantly reduces the occurrence probability 

of metastability through its single-bit variation character-
istics.

Fig. 2 Gray code coding rule diagram
Picture credit : Original
Since the read and write addresses in the asynchronous 
FIFO are controlled by different clocks, it is impossible 
to directly compare the two addresses. Therefore, we of-
ten need to synchronize the read and write addresses in 
the asynchronous FIFO. One of the most commonly used 
methods for synchronizing read and write addresses is to 
synchronize the write address from the write clock domain 
to an intermediate clock domain, and then synchronize the 
intermediate clock domain to the read clock domain so 
that the synchronization of the write clock domain to the 
read clock domain is realized, which in turn synchroniz-
es the read clock domain to the write clock domain. The 
specific synchronization process is shown in Fig.3.The 
read-and-write clock domain can be roughly divided into 
two cases. One is that the read clock domain is faster than 
the write clock domain. In this case, the read address is 
compared with the write address after the two-stage D 
flip-flop. During the synchronization process, the D flip-
flop has a delay, resulting in a time lag. Therefore, the 
read address we compare is smaller than the current actual 

read address. At this time, comparing the smaller read 
address with the write address will get a full signal, but at 
this time, the FIFO may not be written full. The process is 
conservative, so there is no overwrite phenomenon in the 
FIFO; The other is the case that the read clock domain is 
slower than the write clock domain. In this case, the write 
address is compared with the read address after passing 
through the two-level D flip-flop. The D flip-flop has a de-
lay during the synchronization process, resulting in a time 
lag. Therefore, the write address we compare is smaller 
than the current actual write address. At this time, the 
smaller write address is compared with the read address, 
and an empty signal is obtained. However, the FIFO may 
not be read empty at this time. The process is conserva-
tive, so the FIFO does not have an over-read phenomenon. 
Combining the above two cases, it can be found that al-
though the two-stage register consumes time and reduces 
the performance of FIFO to a certain extent, it does not 
affect the function. Therefore, the two-stage register can 
be used for synchronization in both cases.

4



Dean&Francis

Fig. 3 Reading and writing pointer synchronization
Picture credit : Original
In this research design, the input device I selected is a 
virtual camera, which will generate RGB888 image data. 
The bit width of this data is 24 bits. In the experiment, the 
storage space size of the RAM I selected is 32 bits. The 
data read from the RAM will be transmitted to an Avalon 
bus with a data bit width of 128 bits, and finally the data 
will be transmitted to the host computer by the bus. In this 
process, the input signal is 24 bits and the size of a storage 
space in RAM is 32 bits. Therefore, the first data conver-
sion is required to convert the 24-bit RGB888 image data 
into a 32-bit signal and store it in the RAM storage space 
with maximum efficiency. Because the data bit width of 
the bus is 128 bits, a second data conversion is required to 

convert the 32-bit stored data into 128-bit data and output 
it to the bus. In this process, to achieve 24-bit to 32-bit 
data conversion, I choose to read four 24-bit image data at 
one time and store them in three storage spaces of RAM. 
The specific data conversion process is shown in Figure 
4, to maximize the utilization of RAM storage space; to 
convert the 32-bit stored data into 128-bit data and output 
it to the bus, 128 is 4 times 32, so I choose to expand the 
read pointer synchronized to the write clock domain to 4 
times of the original, to realize the function of reading 4 
32-bit stored data and realize the conversion from 32-bit 
to 128-bit. The specific read pointer amplification process 
is shown in Figure 5.

Fig. 4 24-bit to 32-bit process

5



Dean&Francis

Picture credit : Original

Fig. 5 Reading pointer expansion
Picture credit : Original

5. Experimental and Model Evaluation
The asynchronous FIFO design with adjustable input and 
output bit width mainly realizes the function of converting 
24-bit RGB888 image data into 128-bit data output. This 
idea is based on a system that contains a video camera 
module inside. The video camera module is Vcam. The 
main function of this module is to capture the image and 
output one of its RGB888 image data formats. Since the 
clock frequency of the Vcam may not be synchronized 
with the clocks of other modules such as processor mod-
ules and display devices in the system, it will involve 
cross-clock domain data transmission. Therefore, in this 
experiment, asynchronous FIFO is selected to buffer and 
synchronize the data transmitted across the clock domain. 
These image data will be stored in dual-port RAM after 
the first data conversion, and data loss or disorder will be 
avoided through asynchronous FIFO read-and-write con-
trol. When the data is ready, RAM storage space will be 
filled, and then the asynchronous FIFO reads 128 bits of 
data and transmits it to the Avalon bus, and then by the bus 
transmission to other modules for use. Here, because the 
Avalon bus will perform burst transmission with a burst 
length of 16, it is necessary to prepare 16 128-bit data in 
the FIFO before writing the data into the subsequent mod-
ules at one time. Therefore, I designed a programmable 
full signal prog_full in the FIFO. The judgment value of 
this signal is set to 64, because the sum of 16 128-bit data 
is equal to the sum of 64 32-bit storage data, to determine 
whether the bus can perform burst transmission.
After the waveform simulation, I generally divide the 
waveform into two parts. One is the initialization process. 
In the initialization process, first, define a writing task, set 
din as a random number, and set din_en to 1. When the 
write clock falling edge arrives, the write enable is set to 
0; a reading task is defined, and dout_en is set to 1. When 

the write clock falling edge arrives, the write enable is set 
to 0. A register type 4-bit counter is defined, and an al-
ways module is defined. When the rising edge of the write 
clock comes, the random number is imported into the 
counter. Then the set of asynchronous fifo programs is in-
stantiated; Two variables i and j are defined, and each data 
is initialized and assigned by the initial function, and then 
a for loop is used for i. The condition set here is i < 200 
instead of 128. This is because the data we need has 128 
* 32 bits, and the input data is only 24 bits at a time. If 
only 128 cycles cannot fill the internal space of RAM, it is 
necessary to take a number larger than 128 * 32 / 24. 200 
is to meet this condition. In the for loop, the write clock 
rising edge is selected as the sensitive condition, the write 
enable is set to 1, and the write data is set to random, to 
achieve the purpose of randomly filling the RAM space, 
and then a flag signal is defined as the mark of RAM 
filling. When flag = 1, if the counter count is less than or 
equal to 8, the write operation is performed, otherwise the 
read operation is performed. Before the RAM is not filled, 
the read operation is unable to read the stable value, so the 
dout in the waveform diagram has been in an unknown 
state, which is also the most significant waveform feature 
in the initialization process. The specific waveform of the 
initialization process is shown in Figure 6. Another part 
of the waveform is the execution process of random read 
and write. It can be seen from the figure that the designed 
write enable is randomly raised at the rising edge of the 
write clock, and the write data changes with the rise of the 
write enable. The designed read enable is always raised, 
and the read data changes with the rise of the read clock. 
It can also be seen from the figure that the write data is 
24-bit and the read data is 128-bit, which successfully 
realizes the change of input and output bit width. The spe-
cific waveform of the random read-and-write process is 
shown in Figure 7.

6



Dean&Francis

Fig. 6 Initialization process
Picture credit : Original

Fig. 7 Random read-write process
Picture credit : Original

6. Conclusion
The input and output bit width adjustable asynchronous 
FIFO design can be effectively applied to many systems 
involving different bit width data. The adjustability of its 
input and output bit width makes it adapt to different data 
transmission requirements. It can not only convert small 
bit width into large bit width data through similar methods 
but also provide ideas and methods for the transmission of 
large bit width data into small bit width data. Because this 
design is based on asynchronous FIFO, it can also be ap-
plied to multiple processor systems and multiple network 
interfaces. The scenario provides conditions for cross-
clock domain transmission of data and avoids data loss 
caused by clock asynchrony. In the design process, the 
instantiation program is adopted, which can flexibly adjust 
the depth and width of FIFO according to the change of 
demand, so that the system has stronger adjustability and 
adaptability, and can quickly adapt to different application 
scenarios.
To improve performance and resource utilization, we can 

consider designing a more efficient storage structure than 
dual-port RAM in the future, such as distributed LUT. In 
the existing design, more functional modules with dif-
ferent uses can be considered to improve the overall per-
formance of the design. For example, a metastable check 
module can be introduced to ensure the accuracy and 
reliability of the data transmission process; in this design, 
the Gray code is finally decoded into binary code to judge 
the empty and full signals. In the future, we can continue 
to explore the rules of using Gray code to judge the empty 
and full signals. Through more in-depth research on the 
above points, we can further improve the overall perfor-
mance and utilization range of the input and output bit 
width adjustable asynchronous FIFO design, and provide 
a more reliable and efficient solution for data transmission 
of complex systems.

References
[1] Chen Tingting, Lu Feng, Wan Shuqin, et al. Design 
of a Controllable Delay Asynchronous FIFO Circuit [J]. 
Microelectronics, 2022,52 (1) : 42-46. DOI : 10.13911 / 
j.cnki.1004-3365.210280.

7



Dean&Francis

[2] Sun Yuan, Ren Yiqun, Fan Yuyang. Design of AFIFO anti-
SEU [J].Modern electronic technology, 2023,46 (11) : 160-164. 
DOI : 10.16652 / j.issn.1004-373x.2023.11.029.
[3] Zhan Yongzheng, Li Tuo, Hu Qingsheng, et al. A High-
Speed Asynchronous FIFO for 100 Gbit/s Ethernet PCS [J]. 
Microelectronics, 2022, 52 (5) : 886-892. DOI : 10.13911 / 
j.cnki.1004-3365.210404.
[4] Shui Ying. Frame-level asynchronous FIFO design based on 
FPGA [J].Acoustic and electronic engineering, 2020 (2) : 32-34.
[5] Wu Xiuying, Huang Songren. Research and design of 
asynchronous FIFO in floating-point DSP [J]. Electronic World, 
2018,0 (1) : 145-146.
[6] Cong Hongyan, Liu Ying, Wan Qing. Optimization and 
Implementation Based Gray Code and Depth Configurable 
Asynchronous FIFO [J].Electronics and Packaging, 2014 (5) : 
33-36.
[7] Wu Kun, Huang Kun, Fu Yong, et al. A Design and 

Realization of Asynchronous FIFO Based on Gray Code [J].
Computer and Digital Engineering, 2007,35 (01) : 141-144.
[8] Wang Qishuang, Huang Zhenchun, Pu Haifeng. Designs and 
Performance Study for Asynchronous FIFO Based on FPGA [J]. 
Journal of Missiles and Rockets and Guidance, 2014,34 (6) : 
185-189. DOI : 10.3969 / j.issn.1673-9728.2014.047.
[9] Wang Luyuan. Metastable state and mitigation measures in 
FPGA design [J]. Electronic Technology Applications, 2012,38 
(8) : 13-15,19. DOI : 10.3969 / j.issn.0258-7998.2012.08.004.
[10] Yang Yanyan, Si Qianran, Ma Xianying et al. Research on 
Metastability and Its Mitigation Methods in FPGA Design [J].
Journal of Aircraft Measurement and Control, 2014,33 (03) : 
208-213.
[11] Zhu Yu, Dong Guantao, Zhang Shuo.Research on 
metastable processing technology of FPGA software [J].China 
Inspection and Testing, 2020,28 (3) : 14-17. DOI : 10.16428 / 
j.cnki.cn10-1469 / tb.2020.03.004.

8




