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Abstract:
With the fast-growing progress in computational physics, astrophysical simulations are made possible and continually 
upgraded with novel physical models. Contemporarily, many modern simulations feature the capability of cosmological 
radiation. In order to collate the recent improvements in this field, the numerical solver Arepo-RT is discussed as an 
important example. This study reorganizes and interprets the main physical models and numerical techniques used in 
Arepo-RT and similar solvers, with some details simplified to suit common readers. This paper describes simply and 
briefly the finite volume method, the radiative transfer model, the radiation source model, the Godunov-type schemes 
and the time integration, all of which are frequently used in modern radiation simulations. Apart from the realizations of 
the solvers, the results and limitations are also outlined in this paper, including the justification of reduced speed of light 
approximation, the results compared with JWST, and the issue of missing photons. These results shed light on guiding 
further improvements for Arepo-RT.
Keywords: Astrophysical simulation; cosmological radiation; Arepo-RT; THESAN.

1. Introduction
In the past decades, the development in computer sci-
ence has triggered a series of renovations in astrophysics, 
where numerical simulations have become an essential 
part. Early numerical models mostly focused on the 
predominant dark-matter interactions, considering only 
gravitational fields. Later, with the advent of Gadget and 
Arepo [1], cosmic gas and magnetohydrodynamics, as 
relatively complicated physics, were introduced to the 
simulations. These leaders have been boosting the un-
derstanding of cosmological evolution in a wide range of 
redshifts. However, about a higher-redshifted universe, 
including the CMB, the Epoch of Reionization and the 
first galaxies, there is still a lack of knowledge. To per-
ceive these crucial stages of universe evolution requires a 
comprehensive model for the radiation transport (radiation 
hydrodynamics) and cosmic dust. Unfortunately, being a 
six-dimensional non-linear problem, the radiative transfer 
(RT) equations in the models have no general solutions 
and are also challenging for numerical methodologies [2, 
3].
Recently, a breakthrough has been made by taking the 
moment-based solutions. Two examples are Ramses-RT 
[4] and Arepo-RT [5], two solvers for RT problems. The 
latter one is an extension of Arepo and is currently a ma-

jor part of the THESAN project. The THESAN project 
features an all-around model for gravity, radiation hydro-
dynamics, cosmic dust, etc., despite some still uncertain 
parameters [6]. The results of THESAN are generally con-
cordant with observations and have thus proved the utility 
of Arepo-RT. Moreover, the launch of James Webb Space 
Telescope (JWST) has enabled direct observations of the 
early universe. According to some results [7], the power 
of numerical simulations is further justified.
Apero-RT incorporates typical physical models and 
widely used numerical schemes. Hence, if one wishes to 
comprehend the principles used in these simulations, Ap-
ero-RT is an example worth reviewing. The paper is or-
ganized as follows: some basic concepts are discussed in 
Sec. 2. The physical modeling and approximations are dis-
cussed in Sec. 3. Section 4 is dedicated to the numerical 
schemes used in, e.g., Arepo, Arepo-RT and Ramses-RT. 
In Secs. 5 and 6, the validity of those methods is exam-
ined, including the advantages and drawbacks. Finally, the 
whole paper is concluded in Sec. 7.

2. Descriptions
In modern physics, the cosmological principle claims 
that the universe is homogeneous and isotropic at large 
scales, which means that the large-scale property of the 
universe is the same for all observers at any location and 
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any direction. According to the Friedmann Equation, the 
expansion of the universe can be described with the scale 
factor, a t( ) , which is a function of time. Many solvers, 
including Arepo [1, 8], based on the spatial positions on 
co-moving coordinates, namely, position vector, velocity 
and density defined as:
(Tex translation failed)  \[ \]where the unscripted quan-
tities denote those in proper coordinates. The co-moving 
coordinates extract the scale factor from the proper co-
ordinates, so that the change in these quantities will no 
longer be influenced by the expansion of the universe. The 
co-moving coordinates can better describe and compare 
the evolution of the local sections of the universe through 
time. The physics taken into account usually includes the 
ΛCDM model, the gravitational fields and the magnetohy-
drodynamics. Later, photon injection and radiation trans-
port are added to Arepo-RT. These physical equations are 
rewritten into the form of co-moving quantities. The nu-
merical methods for radiation are analogous to those used 
for hydrodynamics. Before Arepo, the mainstream meth-
ods were smoothed particle hydrodynamics (SPH) and 
adaptive mesh refinement (AMR). Springel suggested a 
new method called “moving, unconstructed mesh”, which 
is a kind of finite volume approaches [1]. This method 
was later inherited by Arepo-RT [5].
Arepo-RT, like Arepo, discretizes the 3D space into cells 
to simplify calculations. The cells are constructed by Vor-
onoi tessellation, forming a mesh [1, 8]. Voronoi tessella-
tion produces cells from mesh-generating points. For each 
mesh-generating point, its cell is the region that is closer 
to it than to any other point. The connections between 
neighboring mesh-generating points form an ensemble 
of tetrahedra (i.e., Delaunay triangulation). To construct 
a mesh, the mesh-generating points are produced in the 
procedures: (i) start with four points (corners of a tetrahe-
dron); (ii) insert a mesh-generating point into the tetrahe-
dron; (iii) split the tetrahedron into four smaller ones and 
(iv) repeat for each tetrahedron. The interfaces between 
cells are then constructed according to the mesh-generat-
ing points. In the simulation, each mesh-generating point 
can move, with its velocity and acceleration affected by 
the overall motion of gas (or something else) in its cell. 
The motion is updated during each time step. However, 
the mesh and the gas move independently. Additionally, 
the size, position, and volume of a cell can change, but 
each cell should keep its size and mass within a desired 
interval, which are controlled by several methods: ve-
locity corrections, (de-) refinement and regularization. In 
practical simulations, the algorithm uses a hybrid of parti-
cle-mesh and oct-tree, or a particle-particle particle-mesh, 
for diverse types of interaction.

3. Physical Models
3.1 Radiation Transport
To describe the radiation of a certain gas/plasma, one can 
write down the Euler Continuity Equation:
(Tex translation failed) where the specific intensity Iν  
in the direction n  is described with a six-dimensional 
non-linear equation, which is quite challenging. Some al-
gorithms including Arepo-RT and RAMSES-RT simplify 
the equation by taking the moments of each term. By tak-
ing the zeroth moment, one can obtain [4, 5]:
(Tex translation failed)  w h i c h  c o n n e c t s  e n e r g y 

density r  with flux Φr , as can be interpreted as 

changeindensity+divergenceofflux=emission¨Cabsorption
, where the emission ( S ) is due to the emissivity of the 

plasma, while the absorption ( κ ρ c
 
r ) is due to the 

opacity of the gas. ( c
 
 is a reduced approximation for the 

speed of light) This equation is intuitive that the energy 
is conserved, just like the mass is conserved in a fluid, 
unless there is a source or a sink. Next, by taking the first 
moment,
(Tex translation failed)  connects flux with radiation pres-

sure tensor r . These equations are similar to those hy-
drodynamic equations used in Arepo, so one can continue 
to use the existing numerical methods in which Arepo 
deals with hydrodynamics.

3.2 M1 Closure
However, this derivation has introduced new variables. 
Now there are three variables ( r , Φr , r ) but only two 
equations. Besides, adding higher-order moment equations 
will introduce even more variables. Therefore, to make 
the system solvable, it is necessary to assume an extra 
connection between these variables other than the Euler 
equation. A plausible mathematical approach for this pur-
pose is the M1 Closure. Analogous to the hydrodynamic 
closure, p e= −ρ γ( 1)  (with pressure p , mass density ρ , 
energy density e  and adiabatic index γ ), Levermore et al. 
suggested
(Tex translation failed) where   and χ  are Eddington 
tensor and factor, respectively; they describe the diffusion 
and the propagation speed of the radiation field. The re-
lation is the consequence of a Lorentz-boosted Planckian 
approximation, which assumes that the radiation diffusion 
reaches the asymptotic limit (where photons propagate 
in random walk), where  ≈ / 3 . It is also suitable for 
simulating the radiation when  ≈ nn . However, between 
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these two limits or in the presence of multiple sources, 
this approximation may face some challenges [4].
With the approximation valid, the M1 closure results 
in a PDE system with hyperbolic conservation. Conse-
quently, one can approximate the solution by using an 
operator split scheme. As discussed by Rosdahl & Teys-
sier [4], the scheme splits the equations into two approx-
imately independent processes: the update of the state 
vector (density,flux)  and the update of the source term 
(emission absorption)− . In free transport of photons, 
the (emission absorption)−  term equals zero. Notably, 
photons are relativistic, and therefore the model must be 
discreet when dealing with the Galilean Invariance. On 
the other hand, the source term is dependent on the con-
ditions: different types of sources may vary in frequency 
ranges, intensities, opacities, etc. They are thus applied 
with different approximations. To model these scenarios, 
one can split the emitted photons into several frequency 
bins. For each frequency bin, one can employ the empiri-
cal values of ion species, ionization cross-section, photon 
energies etc. [6].

3.3 Local Thermodynamic Equilibrium
Since not all the details of emission and absorption are 
known, one can assume a local thermodynamic equilibri-
um (LTE), to simplify the model of radiation source’s, es-
pecially when radiation-matter interactions are significant 
[2]. LTE differs from complete thermodynamic equilibri-
um, since the former does not require an exact Planckian 
radiation field but rather assumes it. If a system is in or 
close to LTE, the emission of radiation can be simply 
modelled as blackbody radiation. This is valid especially 
for the infrared radiation from cosmic dust, since dust is 
so dense that its thermodynamic equilibria can hardly be 
affected by the radiation field. However, this approxima-
tion becomes inaccurate for some ultraviolet (UV) sourc-
es, e.g., hydrogen/helium recombination.

3.4 Cosmic Dust and Infrared (IR) Radiation
Cosmic dust is also included in Arepo-RT. In this model 
three main processes are considered: the generation of 
new cosmic dust, its interstellar growth, and its destruc-
tion. Hence, a semi-empirical model is developed by 
McKinnon et al. [9]. The dust usually originates from the 
evolution of Asymptotic Giant Branch (AGB) stars and 
supernovae (SN). The mass of dust generated from stellar 
evolution is proportional to the change in mass of a com-
ponent in the star. For AGB stars, the ratio between mass-
es of carbon and oxygen ( C/O ) determines which species 
of dust can be generated. After the generation, the dust 
will grow, when gas-phase elements collide with dust and 

form more dust, satisfying:
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where τ g  is a characteristic growth timescale affected by 
density and temperature.
Dust grains could also be destroyed when they go through 
SN shocks, sputtering, grain-grain collisions, etc. The 
overall destruction rate is

  
 
 

dM M
d

i i

t
,dust ,dust

destruction

= −
τ d

 (7)

where τ d  is a characteristic destruction timescale, deter-

mined by the shock-destruction efficiency ( 0.3)≈ , the lo-
cal Type II SN rate, and the mass of gas that is shocked to 
≥100km/s . Similar to the ionization fraction, the amount 
of dust is treated as a passive scalar, whose motion 
tracked within individual gas cells. Dust is assumed to be 
advected between gas cells in each time step where the 
net growth rate is calculated before updating the local dust 
mass [4]. In Arepo-RT and similar solvers, gas (coupled 
with dust) emits as a black body, so the emission term for 
infrared (IR) should be
 S caTIR Planck= ∝κ ρ 4 4 Temperature  (8)
provided the LTE approximation is valid here. Notably, 
those non-IR photons are not included in the model.
By assuming the opacities κPlanck  and κ  are equal, the 
resultant continuity equation can be written as

 ∂
∂

t
IR +∇⋅ = −ΦIR Planckκ ρ (caT c4

IR )  (9)

To avoid the 4th power of temperature, one can apply a 
linear symmetrical approximation, and finally obtain [4]:

 Δ   IR =
(κ ρPlanck Δ 4

caT c
t c caT C)−1

4

+ +
−


IR
3 1

V
−

 (10)

3.5 Photon Injection
LTE cannot be applied to UV radiation; thus, detailed 
physics should be modeled. In this case, photons partici-
pate in multiple interactions, including thermochemistry, 
heating and cooling, injection form stars and AGNs. Ther-
mochemistry considers the change in ionization states of 
different species, including HI, HII, HeI, HeII and HeIII. The 
species are reflected by the ionization fractions, which are 
passive scalar coupled with the gas. The photons are also 
divided into several frequency bins. For example, the di-
viding pattern used in THESAN [6] is [13.6,24.6,54.4,∞)  
eV. The source term of photons in bin i  reacting with ion 
species j  is [10]

3



Dean&Francis

 S cn n sij j ij ij= − + γ
iσ  (11)

where nj  and nγ
i  are the number densities of species j and 

photons in bin i ; σ
−

ij  is the average cross-section of the 

ion species, which indicates the probability of ionization; 
sij  is the source due to recombination, which is approxi-
mated to 0 in optically thick media. The equations are 
closed with the conservation of the ion number densities, 
analogous to M1 Closure in free transport.
The heating and cooling are contributed by gas, metal, 
photoheating and dust-gas-radiation field reactions, ac-
cording to Kannan et al. [11]. As discussed by Kannan et 
al. [6], the metal cooling is assumed to be an ionization 
equilibrium, with a spatially uniform UV background. 
Stars and active galactic nuclei (AGNs) also emit radia-
tion, which is described by the BPASS spectra. The ra-
diation from a star is influence by its age and metallicity. 
While for AGNs, the radiation is proportional to the mass 
accretion rate. Besides, the radiation from black holes is 
neglected [6, 12].

4. Numerical Techniques
4.1 Moving Mesh
Arepo-RT defines two state vectors:

 U F= =
   
   
   Φ
r r

r r

, 
Φ


 (12)

which is analogous to the hydrodynamic definition in Are-
po [1]:

 U v F vv Phydro hydro= = +
   
   
   
   
   

ρ ρ
ρ ρ

ρ ρ

e ev Pv
, T

+

v
 (13)

For the free transport case, where 
emission absorption    0− = , the continuity equation can be 
rewritten as

 ∂
∂
U
t
+∇⋅ =F 0.  (14)

One can employ the finite-volume method, describing the 
fluid’s state by the cell averages of the state vectors for 
these cells [1]. For cell i , its state vector U :

 Q Ui =
V
∫

i

d ,V  (15)

assuming that the state vector does not vary within a vol-
ume element, and that the position corresponding to the 
average state vector is at the cell’s centroid. The changing 
rate of Qi  will be used in next steps. It is calculated using 
Gauss’s divergence theorem which converts the volume 
integral into a surface integral,

 d
d
Q
t

i = − −
S
∫

i

(F Uw nT ) dS  (16)

where w  is the velocity of each point of the cell bound-
ary. The changing rate (flux exchange) is calculated for 
each of the cell interfaces adjacent to cell i , then the total 
changing rate is their sum. Due to the failure of Galilean 
Invariance, Arepo-RT has to calculate the flux exchanges 
in the frame that is moving with the cell interface. Later, 
it returns to the lab frame to apply these values to e.g. the 
source terms [5]. Here, w  indicates the relative speed 
between the two frames, and thus has to be taken into ac-
count in the calculation. Here, w  is geometrically depen-
dent on the velocities of the adjacent cells across the inter-
face. As discussed by Springel [1], primarily, the velocity 
of the center of the interface between cells L and R is

 w ≈
v vR L+

2
 (17)

where vR  and vL  are the velocities of the mesh-generating 
points of the cells, respectively. These velocities will also 
affect the cell volume Vi .

4.2 Riemann Problem
A Riemann Problem is a set of partial differential equa-
tions expressing a certain conservation law with piece-
wise initial values. Solving the radiation transfer is in fact 
solving a Riemann Problem. The M1 closure ensures the 
system to have a hyperbolic conservation, while the finite 
volume method causes the state vectors to change sudden-
ly at the cell interfaces. A classic solver to this problem 
is suggested by Godunov, called the Godunov’s Scheme, 
which uses the intercell fluxes to calculate U  at every 
cell interface, and linearly extrapolates for UL R,  at the 
centroids of its neighboring cells (left and right). One can 
carry out the extrapolation in the interface frame, with the 
coordinates set normal to the interface. To make it easier 
to understand, here is a one-dimensional (normal to the 
interface) example [10]:

 U U F Fi i i i
n n n n+1

Δ Δ
− −
t x

+ =+ −1/2 1/2  0  (18)

where n  means the n th time step; i −1/ 2  and i +1/ 2  
denote the cell interfaces of the cell i .
The continuity can also be expressed with a Jacobian ma-
trix ∂ ∂F U/ , whose eigenvalues indicate the signal speed 
(or propagations speed, wave speed) of the system. For 
radiation transfer problems, they are limited within the 
speed of light. The Harten-Lax-van Leer (HLL) scheme is 
an approximated flux function using such property, specif-
ically, the intercell flux
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 Fi+
n
1/2 =

λ λ λ λ+ − + −F F U Ui i i i
n n n n− + −+ +

λ λ
1 1
+ −−

( )  (19)

where λ+  and λ−  are maximum and minimum signal 
speeds, respectively. The method is proposed by van Leer 
et al. Moreover, it can be shown that the ( λ+ , λ− ) of a 
static system and those of a moving system (with a normal 
speed w ) have a linear relationship in terms of w . This 
relationship enables a simple transformation between the 
lab frame and interface frame [5].
If the λ+  and λ−  are set to the speed of light ( ±c ), the 
function can be simplified to:

 Fi+
n
1/2 = +

F F U U ci i i i
n n n n+ −

2 2
+ +1 1 .( )  (20)

This is the global Lax–Friedrich (GLF) function, proposed 
by Rusanov. However, GLF is more diffusive than HLL, 
and therefore better simulates, e.g., the beams and shad-
ows. By contrast, HLL has an inherent directionality, due 
to the choice of the axis, resulting in asymmetric simula-
tions for originally isotropic sources [13].

4.3 Extrapolation and Time Integration
As Godunov’s scheme suggests, tracing the change in 
U  involves a temporal extrapolation ∂ ∂U t/  as well as 
a spatial extrapolation ∂ ∂U r/ . Both extrapolations are 
made independently. For temporal extrapolation, the unit 
of the integration is the length of the timestep. Godunov’s 
scheme assumes that the flux is unchanged within a whole 
timestep (i.e. remains in its initial value) and uses the flux 
to calculate the change in the state vector. Then the fluxes 
are updated, which will be used in the next timestep. This 
method obtains a first-order convergence. However, for 
better accuracy, Arepo-RT uses a hybrid of Heun’s method 
and MUSCL [5, 14], which use the average between the 
initial and final fluxes, differing from Godunov’s using the 
initial flux only. Analogous to trapezium integration, this 
new scheme obtains a second order accuracy.
Spatial extrapolation is to link the state vectors at the cell 
centroids with those at the interfaces. The unit of the inte-
gration is the displacement between the interface and the 
cell centroids. For each cell, the local gradient and geom-
etry should be known. The gradient is obtained by local 
least square fit, that is, determining a cell’s gradient by the 
quantities of its neighboring cells. The gradient is estimat-
ed such to fit the differences in quantities between the cell 
and its neighbors. Arepo-RT, similar to Arepo [1], bounds 
the gradient of a cell such that the intercell differences 
reproduced by the gradient are smaller than the maximum 
actual difference. The geometry is obtained by mesh re-
generation based on the movements of mesh-generating 
points:

 r r vn n n+1 = + Δt  (21)

where vn  is the speed of the mesh-generating point and 
assumed to be constant during the n th time step ∆t . To 
improve accuracy, two different mesh geometries are used 
in one time step. However, only one mesh per timestep is 
created, since the final mesh of the last step can be reused 
for the first half of the current step. In the middle of the 
step, a new mesh is updated, which will be reused for the 
next step.

4.4 Slope Limiter
One constraint of the physical system is that the propaga-
tion speed of radiation cannot exceed the speed of light. 
The property can be expressed by a factor (called the re-
duced flux) f ,

 f = ∈
c
Φ


r

r

[0,1 .]  (22)

This property is not included in most extrapolation 
schemes, so some solvers use slope limiting functions 
(i.e. slope limiters) to restrict the gradients. The limited 
gradients are used to construct piecewise linear functions 
within each cell and extrapolate for Φr  and r . Finally, 

the value of f  is restricted. Nonetheless, some limiters 
may produce noises, such non-physical oscillations [1, 5]. 
As Kanan et al. mentioned [5], Arepo-RT makes the time 
and spatial extrapolations dependent on each other, by 
considering the gradings not only of U  and F  but of f . 
Since the gradients are bounded in extrapolation, the f can 

be naturally limited within the interval [0,1] . Therefore, 
this so-called slope-limited scheme can avoid using extra 
slope limiters that cause noises. Consequently, a second 
order accuracy is secured.

4.5 Operator Splitting
The radiative transfer equations involve the variables in 
cross connections. To solve the change in one variable in 
a timestep, another variable should also be known. How-
ever, both variables can change simultaneously but only 
the initial values are known. Therefore, a simple approach 
is to assert one variable to be unchanged during a timestep 
and solve the variables one by one. Similarly, Ramses-RT 
and Arepo-RT use an operator splitting scheme [4, 5]. The 
split scheme can be employed only when M1 closure is 
valid. The scheme involves three operations in a time-step. 
The first one is a half-step update ( ∆t / 2 ) of energy and 
flux due to the source term, where photons are emitted/
absorbed into the neighboring cells. The second operation 
is a full-step update ( ∆t ) that solves the RT equations, 
obtaining the intercell fluxes. The final one is a half-step 
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update ∆t / 2  of source terms, including the ionization 
states and heating/cooling processes [4, 15]. The operator 
splitting scheme is depicted in Fig. 1. Notably, operator 
splitting does not mean a dimensionally split scheme, as 
described in Springel [1]. Since the mesh is not Cartesian, 

it is impractical to decompose all operations into the same 
combination of independent spatial directions. Therefore, 
Arepo-RT uses an unsplit scheme, constructing a coordi-
nate system for each cell face, with the axes orthogonal to 
the face.

Fig. 1 A diagram describing the split scheme and mesh construction.
4.6 Timestep Constraints
A small timestep can increase the accuracy of the simu-
lation. However, it could also be expensive. For radiative 
transfer (RT), the timestep of each cell is constrained by 
the von Neumann stability condition (in the lab frame), 
which is [5]:

 Δ .tRT ≤η
c +

cell width
 speed of cell

 (23)

As c  is a large value, the timestep is too small and too 
hard to compute. In most cases, a reduced speed of light 

approximation (RSLA), c
 
, can be used, which will be 

discussed in section 5. There are also constraints due to 
hydrodynamics and magnetics, namely ∆thydro  and ∆tmag . 
If all the regimes have the same length of the timestep, the 
timestep should be restricted by all the constraints (i.e. the 
minimum of the constraints). However, RT usually needs 
a higher updating rate than does hydrodynamics. There-
fore, if the length of the timestep can be made different for 
different regimes, the demands can be reached with better 
efficiency, and such method is called sub-cycling.
In addition, there are some special constraints for thermo-
chemistry and IR radiation. A slight change in the photon 
density can lead to rapid changes in the ionization state 
and temperature of the gas. Similarly, IR radiation, depen-

dent on the 4th power of temperature, may also change 
dramatically. Thus, a small timestep is required. Arepo-RT 
employs a semi-implicit approach, which first solves the 
number density implicitly before updating other variables. 
During each time step, if one of variables changes by over 
10% , SUNDIALS CVODE (another algorithm) should 
be used instead to check it [4, 5].

4.7 Subcycling
Subcycling is to give the radiative transfer (RT) a different 
length of timestep from that of hydrodynamics. It is used 
by many solvers, so as to keep the convergence with only 
a small number of time steps [5]. Specifically, ∆thydro  is 

divided into a number ( Nsub ) of RT sub-steps, which are 
arranged in a routinized process. Before the operation, the 
length of the timestep is set to ∆t Nhydro sub/ . The first oper-
ation is thermochemistry and momentum injection, fol-
lowed by the construction of Active interfaces (those hav-
ing at least one adjacent cell). The timestep is then reset to 
the 1/ Nsub  of the minimum timestep of adjacent cells. Fi-
nally, then each cell’s flux is exchanged over those inter-
faces and the variables are updated. Fig. 2 shows that the 
RT sub-steps are based on the original Arepo hydrody-
namics [16].

Fig. 2 The subcycling process of Arepo-RT as an extension Arepo [16].
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5. Results
5.1 The Performance of HLL and GLF Solv-
ers
Kannan et al. examined the propagation of free-streaming 
radiation waves in a completely absorbing, homogeneous 
medium with low optical depth [5]. To test the conver-
gences of the algorithms, HLL and GLF schemes were 
used, along with their piecewise-constant (PC) versions 

(PC-HLL and PC-GLF). The latter two were to mimic the 
piecewise constant approximation used in obsolete solv-
ers, so as to verify the improvements of the new linear 
extrapolation schemes. The tests were carried out using a 
regular Cartesian ( 0%  deviation) and three irregular ones 
( 1% , 10%  and 20%  deviations). As the results shown in 
Fig. 3, the PC-GLF and PC-HLL only obtained a first-or-
der convergence, whereas the GLF and HLL schemes 
showed a faster convergence with an order of ~ 2.0 .

Fig. 3 The convergences of different schemes with different mesh distortions [5].
It is notable that the convergence was hardly affected by 
the choice of HLL or GLF but heavily affected by piece-
wise approximation. In other words, the difference in 
diffusion caused by the PC scheme is much more signifi-
cant than that between HLL and GLF. Therefore, the new 
schemes are far less diffusive than the PC ones. However, 
the convergences of all schemes decreased as meshes 
became more irregular, which highlights the necessity for 
mesh regularization.

5.2 Effect of Reduced Speed of Light
To avoid a small time-step and boost computing efficien-
cy, a reduced speed of light approximation (RSLA) may 
be employed. The approximation is valid as long as the 

reduced speed of light is still faster than any other radia-
tion transport. According to Wu et al. [13], which used 
Arepo-RT to simulate the interplay between the photo-
heating and the star formation rate (SFR), the RSLA has 
no significant impact on this simulation. In their experi-

ment, it was shown that a c c
 
= 0.1  results a 1 0  times 

smaller photoionization rate (post-reionization). To further 
assess the impact, Wu et al. [13] carried out simulations of 
25cMpc / h  box size with 2 256× 3 resolution elements 
(L25n256) with 0.1c , 0.3c , and 1.0c . Fig. 4 illustrates 
the gas temperature T  against redshift z , with varying 

overdensities of 1ρ
−

, 10ρ
−

, 100ρ
−

, 1000ρ
−

. Generally, 
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T  
 
 
ρ
−

 and T  
 
 
1000ρ

−

. showed an acceptable conver-

gence at all redshifts. When z < 6.5 , however, the 0.1c  

simulations with 10ρ
−

 and 100ρ
−

 showed an underestima-

tion of 5,000 10,000K− .

Fig. 4 The simulated gas temperature against redshift with different overdensities [13].
The effect of such differences can be evaluated through 
the comparison between FG09 simulation (mimicking 
0.1c  simulation) and FG09x10 simulation (mimicking 
1.0c  simulation), the former one with 10  times smaller 
photoionization rates. It can be shown that, at z = 6 , the 
~ 10,000K  difference in the halo gas temperature only 
caused an enlargement of 0.1 ~ 0.2dex  in the halo mass 
needed for SFR suppression. Furthermore, the same simu-
lation also showed good accuracy in intergalactic medium 
temperatures. Briefly, in this situation, the accuracy of 
the simulation can be kept even with such a low value of 
0.1c , suggesting that the RSLA is a credible and robust 
approach.

5.3 Comparisons with JWST
Arepo-RT is a decisive component of the THESAN proj-
ect. Hence, the results obtained by the THESAN project 
can evidently reveal the performance of Arepo-RT. Ac-
cording to Garaldi et al. [7], the THESAN simulations 
show excellent agreement with the JSWT observation 
results. On the one hand, the galaxy main sequence at 
high redshift ( z < 6 ) simulated by THESAN matches the 
JWST observations well. In the low-redshift context, the 
main sequence is the majority of galaxies with their total 
stellar mass ( M* ) correlated with their star formation rate 
(SFR). However, such correlation at high redshifts ( z > 6 ) 
is still under debate. The left panel of Fig. 5 compares the 
simulated results with the observations, from which one 
can conclude that the two sources of data are generally 

consistent with each other, despite some over-predicted 
SFRs when M M* 108



 and under-predicted SFRs part-

ly when M M* 109


. This consistency offers strong evi-
dence to understand the high-redshift correlation of galaxy 
main sequence.
On the other hand, THESAN also relatively accurately 
predicts the UV slope distribution at z≥5.5 . The UV 
slope ( β ) is defined as the power-law index of the rest-
frame galaxy UV continuum, which is related to the stel-
lar ages and the metal compositions. A lower β  means a 
bluer radiation, which indicates a young galaxy with little 
dust and metal, while β ≈ −3  is considered as a limit val-
ue. The right panel shows the UV slope–UV magnitude 
relation β (M UV )  in five redshift intervals. Apparently, 
the galaxies simulated by THESAN lie in a U-shaped 
distribution: (i) at M 18UV ≈ − is the lowest (bluest) UV 
slopes, typically implying some young galaxies; (ii) For 
brighter or fainter ones ( M 18UV ≠ − ), the UV slope in-
creases towards both poles, possibly due to some older 
galaxies, where dust gradually escalates and makes the 
radiation redder. Compared with the observed data, the 
bright galaxies depict an overall alignment with observed 
UV slopes, but some faint stars show significant devia-
tions due to the selection biases (limitations on photomet-
ric measurement). Despite a larger scatter compared to the 
simulations, the simulation is considered successful even 
with only a small volume [7].
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Fig. 5 The star formation rate plotted with observation data (left) and the UV slope 
distribution where darker squares mean smaller UV slope (right) [7].

6. Limitations
6.1 M1 Closure
Many numerical solvers, including Arepo-RT, employ the 
M1 Closure relation, which performs well for most prob-
lems. However, the M1 closure relation has some inherent 
disadvantages, such as the failure of asymptotic limit and 
the imperfection of modeling multiple-source geometry.  
According to Kannan et al. [5], modeling convergent rays 
can highlight the shortcomings of M1 Closure. A simu-
lation is carried out for the free-streaming radiation dis-
tribution from a thin disk in 2D box, where the disk was 
surrounded by a torus of optically thick medium, outside 
which was optically thin and tenuous gas (The disc kept 
constant photon energy density).

Fig. 6 The radiation field contours of analytic 
solution and numerical simulation [5].

Fig. 6 depicts the histogram of the radiation field intensity 

and the radiation field contours. As can be seen, the simu-
lation matches the analytic result only qualitatively, where 
the simulation slightly overshoots the analytic solution in 
the y−direction but undershoots in the x−direction. In this 
scenario, the photons from the left side and the right side 
could have been passing through each other. However, the 
M1 closure usually overestimated the interaction between 
the photons, blocking the x–direction movement of pho-
tons and producing spurious fluxes at y–direction. Conse-
quently, the M1 Closure caused deviations from the ana-
lytic solution [5]. Simulations using M1 Closure should be 
careful about these issues. If possible, an analytic solution 
should be attempted and added to the algorithm, so as to 
compensate for the numerical schemes.

6.2 Missing Photons
Deng et al. considered the evolution of HII regions around 
massive stars, which spans large ranges both spatially 
and temporally [15]. The small-scale physics inside the 
Strömgren spheres is decisive to understanding the evolu-
tion but simulating the process requires high resolutions. 
(Strömgren sphere: a very small and fully ionized regions 
with a temperature ≈10 K4  from which the massive star’s 
radiative feedback originates). They points out another 
issue of the Arepo-RT or similar uncoupled solvers: using 
an insufficient temporal resolution can result in a serious 
error, the missing photons.
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Fig. 7 The change in photon number density obtained by an accurate solution and an 
uncoupled solver, with the missing photons shown [15].

The missing photons are those absorbed in a medium but 
without any effect on the ionization state of the medium. 
This error is mainly due to the operator splitting scheme 
used in Arepo-RT and other uncoupled solvers, which cal-
culate the photon absorption independently of solving 
thermochemistry equations. If a too long timestep is used, 
the error emerges where there is not a uniform cadence in 
the photon thermochemistry. It can be illustrated by simu-
lating the photon absorption in neutral gas with and with-
out the split scheme, respectively. As shown in Fig. 7, as 
∆t t/ rec  (ratio of the timestep to the recombination times-
cale) increases, the uncoupled solver dramatically deviates 
from the accurate solution, leaving a missing photon re-
gion. As discussed in Deng et al. [15], in a timestep, the 
total amount of absorbed photons ∆Nγ  and that of missing 

photons δNγ  can be modeled as:

 Δ Δ , δ Δ 1 .N t N t fγ γ rec= = − +
N N n
Q Q Q

nb nb B Hα i

( )  (24)

when ∆t  is large enough, δN Nγ γ≈ ∆ , which means al-
most all photons are absorbed without any effect on the 
ionization of the gas.
More seriously, the missing photons issue will propagate 
in the next timesteps, as it will repeat after each injection. 
However, there is no mechanism to compensate for these 
missing photons. To settle this problem, one can simply 
abandon the split scheme but instead couple the photon 
densities with the thermochemical solver. Still, this ap-
peasement cannot solve the problem of the high demand 
of computational resources, especially when many ion 
species are included. Furthermore, Jaura et al. suggested 
an approximate uncoupled solver to correct the issue [17]. 

The new solver forces the number of absorbed photons 
not to surpass the number of ionizable atoms, provided 
that there is no sudden change in recombination rate. This 
approach is inexpensive but suitable for most cases.

6.3 Others
As mentioned by Borrow et al. [18], the assumption of a 
uniform UV background in calculating metal cooling rates 
can result in potential problems, if reionization is simu-
lated to proceed differently. Nonetheless, fully calculating 
with the non-equilibrium metal cooling model is still im-
practical, since the computational cost is huge. Besides, 
as Garaldi et al. pointed out [7], the Arepo model used in 
THESAN only employs the two-phase interstellar medium 
(ISM) model. Yet, a multi-phase ISM model is necessary 
for more self-consistent simulations, but the compatibility 
for multi-phase model does not inhere in the algorithm. 
Thus, the current simulations are unable to cover cold, 
dense and molecular phases of the ISM, giant molecular 
clouds, etc.

7. Conclusion
To sum up, this study focused on the main features of 
Arepo-RT, introducing the physical models and numer-
ical schemes. Specifically, the radiative transfer model 
is a moment-based form of Euler Continuity Equation, 
where the source term is set to zero. The radiative transfer 
possesses a similar algebraic structure to that of hydrody-
namics. Technically, it is conducted on a moving mesh, 
with the intercell fluxes calculated through HLL and 
GLF schemes. The time integration is a hybrid of Heun’s 
method and MUSCL, where the timesteps are sub-cycled 
within hydrodynamics steps. The results and limitations 
of Arepo-RT are also included in this paper, as a crucial 

10



Dean&Francis

proof for the capabilities of the solver. These methodol-
ogies incorporated by Arepo-RT are representative of the 
radiation simulations. This reserach aims to provide an 
overview of cosmological radiation simulations, so that 
the readers can understand those principles with ease and 
thus learn the insights of those simulations. This paper is 
not only educational, but helps contribute to the knowl-
edge system, making this field more open to the public. 
The author hopes more people can be inspired by this pa-
per and get involved in astrophysical simulation research. 
However, the field is highly interdisciplinary and rapidly 
evolving, when new algorithms and computational forces 
are continually emerging. A further step in catching up on 
the new developments is still necessary.
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