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Abstract:
Reed-Solomon (RS) codes are widely utilized in data storage and communication systems due to their robust error 
detection and correction capabilities. However, traditional RS codes encounter challenges in addressing the increasing 
data corruption rates demanded by modern storage systems. This paper aims to overcome these limitations by modifying 
and extending the structure of traditional RS codes, particularly enhancing their recovery capabilities in the face of 
significant data loss. We begin by reviewing the theoretical foundations of RS codes and existing extension methods 
and discussing emerging technologies integrated into RS codes. We then present detailed methodologies for RS code 
encoding, erasure recovery mechanisms, soft decision decoding, and interleaving coding techniques, followed by 
a series of experiments designed to test the proposed methods. The experimental results indicate that soft-decision 
decoding outperforms traditional hard-decision decoding under high signal-to-noise ratio conditions, albeit with 
increased computational complexity as the list of candidate codewords grows. Interleaved Reed-Solomon (IRS) coding 
offers improved performance under low signal-to-noise ratio conditions but may introduce additional system complexity 
due to the interleaving and deinterleaving processes. We conclude with a summary of the research findings, a discussion 
of the study’s limitations, and suggestions for future research directions.
Keywords: Reed-Solomon code; erasure recovery; data storage; extension.

1. Introduction
Reed-Solomon (RS) codes are a class of error-correcting 
codes that are widely used in data storage and commu-
nication systems. The fundamental concept behind RS 
codes involves representing data as polynomials over 
a finite field, from which parity symbols are generated. 
These parity symbols enable detecting and correcting 
errors that occur during data transmission or storage. RS 
codes are particularly effective in recovering erasures and 
correcting errors, making them invaluable in scenarios 
where portions of data may be lost or corrupted. Because 
of their reliability and efficiency, RS codes play a critical 
role in ensuring data integrity in modern digital communi-
cation systems, including applications such as optical disc 
storage, satellite communications, and QR codes. Due to 
their versatility, RS codes are also widely employed in the 
medical field for the reliable transmission and processing 
of medical images and biological data, as well as in the 
financial sector for secure financial data exchange and en-
suring the integrity of blockchain information.
Despite their widespread use, traditional Reed-Solomon 
codes face challenges in meeting the increasing demands 

of modern data storage systems, especially under con-
ditions of higher data corruption rates. As data volumes 
grow and storage requirements become more stringent, 
the limitations of RS codes in terms of error correction 
and recovery become more pronounced. Specifically, their 
recovery capabilities may be insufficient when faced with 
severe data loss, leading to potential data integrity issues. 
This research aims to address these limitations by modi-
fying and extending the traditional RS code structure. The 
primary objective is to enhance the error correction capa-
bilities of RS codes, ensuring reliable data recovery even 
under conditions of significant data loss. By exploring 
new methods and techniques, this study seeks to improve 
the resilience and effectiveness of RS codes in contempo-
rary data storage environments.
This paper is organized into five main sections. Following 
this introduction, the Literature Review provides an over-
view of the theoretical foundations of RS codes, exam-
ines existing extension methods, and discusses emerging 
technologies that are being integrated into RS codes. The 
Methodology and Technical Model section presents the 
technical details of RS code encoding, erasure recovery 
mechanisms, soft decision decoding, and interleaving 
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coding techniques. In the Experiments and Model Evalu-
ation section, the design and results of experiments con-
ducted to test the proposed methods are detailed. Finally, 
the Conclusion and Future Work section summarizes the 
findings, discusses the research limitations, and suggests 
potential directions for future research.

2. Literature Review
2.1 Theoretical Basis of Reed-Solomon Code
Reed-Solomon codes (RS) have been used in computers 
and other storage devices, and a lot of related research 
has been accumulated. RS codes, based on finite fields, 
use polynomial representation and generator matrices for 
effective error detection and correction in data transmis-
sion or storage [1]. The generator matrix for RS codes is 
constructed by evaluating a set of polynomials, typically 
over a Galois field, at distinct points corresponding to the 
codeword positions, ensuring that each row of the matrix 
represents a unique polynomial evaluated at those points, 
which forms the basis for encoding data into codewords 
[2]. Reed-Solomon encoding involves representing the in-
put data as coefficients of a polynomial over a finite field, 
then evaluating this polynomial at different points within 
the field to generate a codeword, which consists of both 
the original data symbols and additional parity symbols 

that provide redundancy for error detection and correction 
during transmission or storage [3]. The basic principle of 
Reed-Solomon erasure recovery involves using the redun-
dant parity symbols added during encoding to reconstruct 
the original data by identifying and correcting errors 
based on discrepancies in the received codeword [4]. This 
simple but efficient coding logic makes RS code easy to 
use and expand.

2.2 Existing Extension Methods of Reed-Solo-
mon Code
To address the limitations of traditional RS codes, re-
searchers have explored various methods to extend their 
error correction capabilities.
One common approach is to adjust the parameters (code 
length n  and data symbol k ) to add redundancy, thereby 
increasing the code’s ability to correct more errors and 
erasures. For instance, in distributed storage systems like 
Google File System and Facebook’s storage solutions 
(as shown in Table.1), RS codes are often customized to 
balance storage overhead with error correction strength 
[5]. Increasing redundancy in Reed-Solomon codes en-
hances error correction and erasure recovery capabilities 
but comes at the cost of increased storage or bandwidth 
requirements, higher computational complexity, and po-
tential delays in real-time systems.

Table 1. RS code of different companies[5]

Storage system Erasure code # tolerable failures
Google File System II (Colossus) RS(9,6) Three

Quantcast File System RS(9,6) Three
Hadoop Distributed File System RS(9,6) Three

Yahoo Cloud Object Store RS(11,8) Three
Backblaze Vaults RS(20,17) Three

Facebook f4 Storage System RS(14,10) Four
Baidu Atlas Cloud Storage RS(12,8) Four

Other techniques include the use of hybrid coding 
schemes, where RS codes are combined with other er-
ror-correcting codes or integrated into more complex 
systems like RAID configurations [6]. This kind of con-
catenated coding can also achieve the effect of improving 
error recovery, but it also makes the coding process more 
complex and difficult to design and maintain.
Multilevel coding is also a great extension. It combines 
multiple coding schemes to enhance error correction by 
applying different codes to different data layers. For ex-
ample, using LDPC as the outer code and Reed-Solomon 
as the inner code enhances error correction capabilities in 

challenging communication environments. This approach 
improves the system’s resistance to both burst and random 
errors, making it suitable for high-reliability applications 
like UAV video transmissions [7]. It offers high error re-
silience and flexibility but can increase complexity and 
computational cost.
These extensions have shown promise in enhancing the 
reliability of RS codes in large-scale storage environ-
ments.

2.3 Application of emerging technologies in 
Reed-Solomon Code
In recent years, new technologies have been applied to RS 
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codes to further improve their error correction capabili-
ties.
One example is the locally repairable code (LRC). When 
LRC are combined with RS codes, they incorporate local 
repair constraints. These constraints allow some redun-
dancy data to be used for repairing specific failed symbols 
by accessing only a small number of other symbols, rather 
than requiring access to the entire dataset [8]. This design 
is typically achieved through optimization algorithms that 
ensure minimal storage overhead while increasing redun-
dancy. This combination enhances the system’s robustness 
and efficiency, particularly in large-scale data storage sys-
tems, making it effective in handling multiple failures.
Another technique is soft decision decoding. Traditional 
RS codes use hard decision decoding, where each received 
symbol is simply classified as correct or incorrect. How-
ever, soft decision decoding leverages additional informa-
tion from the received signal, such as signal-to-noise ratio 
or symbol confidence, to improve error correction perfor-
mance [9]. Koetter-Vardy algorithm [10] and neural net-
work-assisted decoding are the two most commonly used 
soft decision decoding in RS codes. It enhances error cor-
rection by utilizing additional information like confidence, 
leading to better performance in noisy environments.
Interleaving coding rearranges data sequences during en-
coding to reduce the impact of burst errors on the system. 
This is particularly useful in communication and data 
storage, especially when dealing with correlated failure. 
This technique, combined with RS codes, allows for more 
flexible management of different levels of error protec-
tion, which is crucial in high-speed data transmission and 
storage systems [11]. Interleaving coding in RS codes ef-
fectively mitigates the impact of burst errors but increases 
complexity and may require additional processing time 
and memory to handle the reordering and decoding pro-
cesses.
These methods offer significant potential for improving 

the robustness of RS codes, particularly in environments 
where data loss occurs in clusters or bursts.

3. Methodology and Technical Model
3.1 Encoding and Erasing Recovery Mecha-
nism
Reed-Solomon codes are block codes that are constructed 
by encoding data as polynomials over a finite field, typi-

cally GF (2m )  or GF n( ) , where m  is an integer and n  

is a prime number. The generator matrix G  is used to pro-
duce codewords by multiplying it with data vectors. The 
codeword, which includes both the original data and pari-
ty symbols, is transmitted or stored. The decoding process 
involves identifying and correcting errors or erasures by 
leveraging the algebraic structure of the code. The error 
correction capability of RS codes is determined by the 
minimum distance d n kmin = − +1 , where n  is the code 
length and k  is the number of data symbols. RS codes 
are particularly effective in correcting both random errors 
and erasures, making them ideal for use in environments 
where data integrity is critical.
As shown in Fig.1, the diagram illustrates the basic pro-
cess of Reed-Solomon encoding and decoding in a com-
munication or storage system. The two blocks are abbre-
viated representations of the RS encoding and decoding 
operators. This flowchart runs from left to right. First, the 
data is transmitted from the data source to the Reed-Sol-
omon encoder, where it is encoded with additional redun-
dant information. Then, the encoded data passes through 
a communication channel or storage device, during which 
it may be affected by noise or errors. Next, the Reed-Solo-
mon decoder receives the data and uses the redundancy to 
detect and correct any errors. Finally, the corrected data is 
sent to the data sink.

Fig 1. RS code recovery process[12]
Here is an example of using a (5,3)RS code in GF(7) to 
recover from two erasures. In general, we construct the 
generator matrix like this( a a a1 2, … n  are distinct elements 

of your Galois field):
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As shown in Fig.2, the process of using the generator ma-
trix to recover erasures (missing data) in a Reed-Solomon 
code. Here’s a breakdown of the steps:
Step 1. Generator matrix G* :
The generator matrix G*  is shown, where each element is 
calculated as powers of integers. Then it is simplified to 
the actual generator matrix using modulo 7 arithmetic.
Step 2. Message encoding:

A message vector m  is multiplied by the generator matrix 
G  to produce the codeword c . This codeword is what 
gets transmitted or stored.
Step 3. Received message with erasures:
Data corruption occurs during transmission or storage. 
The received message contains two erasures(missing 
symbols). To recover the missing data, a submatrix of G  
corresponding to the received positions is formed, and its 
inverse matrix is used.
Step 4. Recovery of the original input message:
The received vector is then multiplied by this inverse to 
recover the original message vector m . That’s a success-
ful recovery.

Fig 2. RS code erasure recovery
3.2 Soft Decision Decoding using Koet-
ter-Vardy algorithm
The Koetter-Vardy(KV) algorithm is a significant ad-
vancement in the field of error correction, specifically 
for Reed-Solomon codes. It is a soft-decision decoding 
algorithm that improves upon the traditional hard-decision 
decoding methods.
Unlike hard-decision decoding, which uses binary deci-
sions (correct or incorrect) based on received symbols, 
soft-decision decoding considers the reliability of the re-
ceived symbols. This means it takes into account addition-
al information like confidence levels or probabilities. The 
Koetter-Vardy algorithm seeks to maximize the likelihood 
of the received sequence being a valid codeword. It does 
this by considering the probability of each symbol and 
adjusting the decoding process accordingly. For example, 

one bit erasure happened in our codeword and we are in 
GF(7). Now we need to know every possibility of that 
position(in this case, it’s an integer between 0 and 6) and 
calculate their probability respectively. It can provide us 
with decision basis, performance evaluation, and uncer-
tainty management.
As shown in Fig.3, the process of the KV soft decision 
begins with assigning multiplicity values to each symbol 
based on its reliability, giving more weight to more reli-
able symbols(reliability information). The algorithm then 
constructs a bivariate polynomial through interpolation, 
which considers these multiplicities and the structure of 
the RS code. After finding the roots of this polynomial, 
the algorithm generates a list of candidate codewords and 
selects the most likely one based on the reliability infor-
mation. This selected codeword is then output as the de-
coded message, offering improved accuracy in decoding.
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Fig 3. Block diagram of the KV soft-decision decoder[13]
The Koetter-Vardy algorithm is particularly useful in 
scenarios with high noise levels, such as satellite commu-
nication, deep-space communication, and certain storage 
systems where data reliability is critical. By integrating 
machine learning or data analysis with the KV algorithm 
for Reed-Solomon codes, we can enhance the accuracy of 
data recovery. Machine learning models can predict the 
likelihood of erasure positions based on communication 
channel features.  These predictions, represented as prob-
abilities, are then used to adjust the soft-decision inputs 
and weights in the Koetter-Vardy algorithm, leading to 
improved decoding performance and more accurate data 
recovery in challenging environments.

3.3 Interleave Coding
Interleaving coding is used in Reed-Solomon (RS) codes 
to combat burst errors by rearranging the order of data 

symbols before encoding. This process involves taking 
multiple blocks of data and interleaving them so that con-
secutive symbols in the output stream come from different 
blocks. If a burst error affects the transmitted data, the 
errors are spread out across multiple blocks when deinter-
leaving, making them easier for the RS decoder to correct.
We know that it’s impossible for a (5,3)RS code to re-
cover from three erasures. However, if we put two 5-bit 
codewords together to form a new 10-bit codeword, it can 
recover from some specific combinations of three erasures 
and the recovery rate is about 83%. Here is an example, 
as shown in Fig.4, two 5-bit codewords c1  and c2  are 

merged to a new codeword. It is followed by two possible 
situations of three erasures, one is recoverable and the 
other is not.

Fig 4. Merge codewords for better recovery capability
Now, as shown in Fig.5, if the two original codewords 
are no longer simply placed end to end, but in a new in-
terlaced order like the following image(one from the first 
codeword, one from the second codeword…), the recov-

ery rate can be further improved, especially when erasures 
occur in bursts. This is the basic concept of interleave 
coding.

Fig 5. Interleave coding
As shown in Fig.6, the diagram illustrates an Interleaved 
Reed-Solomon(IRS) Code. “N” is The total number of 
symbols after encoding. “Information symbols” are the 
original data after encoding. “Redundancy symbols” are 
additional symbols for error detection and correction. 
“K(1), K(2), K(3), K( l )” are different levels of redundan-

cy or encoding steps, where K indicates the degree of the 
generator polynomial. Burst error is a type of error where 
multiple errors occur consecutively, which the code is de-
signed to handle effectively.
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Fig 6. Interleaved Reed-Solomon code[11]

Now, the decoder can correct up to 1− 2k n
3n
+  [14]fraction 

of random errors[15]. This technique enhances the error 
correction performance of RS codes, particularly in chan-
nels where errors tend to occur in bursts.

4. Experiments and Model Evaluation
4.1 Experiment with constant n and increas-
ing t
First, we can simulate the effect on bit error rate (BER) 
performance with increasing error correction capability t  

( t = n k−
2

) for a fixed value of n .

As shown in Fig.7, the graph presents the results of the ex-
periment investigating the BER performance of RS codes 
over an AWGN (additive white Gaussian noise) channel 
using 32-ary FSK(Frequency-Shift Keying) modulation 
with a constant block length ( n = 31 ) and varying error 
correction capabilities t . The horizontal axis represents 
the signal-to-noise ratio(SNR), E Nb / 0 , measured in deci-

bels (dB). Here, Eb  stands for the energy per bit, and N0  

represents the noise power spectral density. Moving from 
left to right on the x-axis indicates an increasing SNR, 
meaning the signal strength relative to the noise is im-
proving as E Nb / 0  increases. The vertical axis represents 

the BER, which is the proportion of bits received with er-
rors out of the total number of bits transmitted. The y-axis 
is displayed on a logarithmic scale, ranging from 10−8  to 
100 . A lower BER indicates better system performance 
with fewer bit errors. In summary, each curve in the graph 
shows how the BER varies with changes in E Nb / 0  for 

different configurations of RS codes.

Fig 7. RS error performance for MFSK over AWGN channel with constant n and increasing t 
[16]

It was observed that increasing t  from 1 to 5 improves 
BER performance, but further increases in t  degrade 
performance due to the reduced code rate and higher com-

putational complexity.  RS(31, 21) with t = 5  and a code 
rate of 0.68 was identified as the optimal configuration, 
offering a coding gain of approximately 3.3 dB. This bal-
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ance between error correction capability and computation-
al power is crucial for optimal performance.

4.2 Experiment with constant k and increas-
ing n - k
Then we can design an experiment with constant message 
length k  and increasing n Ck¨ .
As shown in Fig.8, the graph illustrates the impact of in-
creasing redundancy ( n Ck¨ ) while keeping the number of 
data symbols constant ( k = 29 ) on the BER performance 

of RS codes with 32-FSK modulation over an AWGN 
channel. This graph uses the same horizontal and vertical 
coordinates as the previous one. The results indicate that 
as the codeword length ( n ) increases, the error correction 
capability of RS coding is enhanced, achieving a lower 
BER at the same SNR. However, the code rate ( k n/ ) de-
creases with increased redundancy, which may affect the 
system’s throughput.

Fig 8. RS error performance for MFSK over AWGN channel with constant k, increasing n – k 
[16]

4.3 Experiment of soft decision decoding in 
RS code
As shown in Fig.9, the figure illustrates the codeword 
error rate (CER) versus signal-to-noise ratio (SNR) for 
different decoding algorithms applied to a (225, 144 122) 
Reed-Solomon code with 256-QAM(quadrature amplitude 
modulation) over an AWGN channel. The horizontal axis 
represents the SNR, and the vertical axis represents the 
CER. L  denotes the list size in soft-decision decoding, 
indicating the number of candidate codewords considered 
during decoding(When L  is small, the decoder considers 
only a few candidate codewords, which may lead to a 

higher error rate because the range of possibilities is too 
narrow. As L  increases, the decoder can consider more 
candidate codewords, making it more likely to find the 
correct codeword, and the error rate decreases according-
ly. When L = ∞ , the decoder theoretically considers all 
possible candidate codewords. In this case, the soft-deci-
sion decoder performs the best, achieving the lowest error 
rate.). The experimental results show that as L  increases, 
the performance of soft-decision decoding gradually im-
proves, especially at higher SNRs, significantly reducing 
the error rate and outperforming traditional hard-decision 
decoding algorithms like Berlekamp-Welch and Guruswa-
mi-Sudan.
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Fig 9. Performance of algebraic soft-decision decoding for the (255, 144, 112) Reed–Solomon 
code with 256-QAM modulation on an AWGN channel [10]

4.4 Experiment of Interleaved Reed-Solo-
mon(IRS) code
As shown in Fig.10, the experiment displays the decod-
ing performance of the concatenated code on an additive 
white Gaussian noise (AWGN) channel using binary phase 
shift keying (BPSK) modulation. It is a concatenated 
code composed of an outer RS code and an inner rate 1/2 
memory 6 tail-biting convolutional code. The following 
graph compares the performance of independent RS de-
coding and collaborative interleaved Reed-Solomon(IRS) 
decoding. The horizontal axis represents the signal-to-
noise ratio(SNR), E Nb / 0 . The vertical axis represents 
the word error rate (WER), which is the probability of 

decoding errors occurring during the process, shown in 
logarithmic form. From the graph, we can see the vertical 
axis ranges from 100 (100% error rate) to 10−6 (an error 
rate of one in a million). The upper bound curves provide 
an expectation of performance in an ideal situation, while 
the actual decoding performance curves show what can be 
achieved in real decoding processes. The graph shows that 
collaborative IRS decoding outperforms independent RS 
decoding, indicating that decoding the entire IRS code as 
one unit can improve decoding performance. Randomized 
collaborative IRS decoding may provide performance 
improvements or simplify the decoding process in certain 
situations compared to non-randomized decoding.
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Fig 10. Simulated decoding performance of the concatenated code composed of three 
codewords from the outer code ( 2 ;255,233,338 ), and an inner rate 1/2 memory 6 tail-biting 

convolutional code, AWGN channel, BPSK modulation[11]

5. Conclusion
5.1 Summary
In the series of experiments conducted in the paper, we 
analyzed the error-correcting capability of RS codes in 
data storage systems and enhanced its erasure resilience 
through various extension methods. Soft-decision de-
coding demonstrated better performance than traditional 
hard-decision decoding under high SNR conditions, but 
the computational complexity increases with the enlarge-
ment of the candidate codeword list. IRS coding provided 
better performance under low SNR conditions but may 
increase system complexity due to the interleaving and 
deinterleaving processes. Considering both the recovery 
rate and computational complexity, soft-decision decoding 
is suitable for high SNR environments, while IRS coding 
is more effective under low SNR conditions. The optimal 
method should be chosen based on the specific application 
scenario and system requirements.

5.2 Limitation
The research presented in this paper has made strides 
in exploring the enhancement of erasure resilience in 
Reed-Solomon codes for data storage systems, yet it faces 

several challenges and limitations. Firstly, while soft-de-
cision decoding demonstrates superior performance under 
high SNR conditions, this improvement comes at the cost 
of increased computational complexity. As the list of can-
didate codewords expands, the demand for computational 
resources and time grows, potentially impacting the appli-
cation in real-time systems. Secondly, IRS coding, though 
effective in improving the recovery rate under low SNR 
conditions, adds complexity to the system due to the inter-
leaving and deinterleaving processes, which may lead to 
processing delays and affect the overall throughput of the 
system.
Moreover, the experiments were primarily conducted in 
a simulated environment and based on theoretical mod-
els, which may not fully account for the complexities 
encountered in practical applications, such as hardware 
limitations, characteristics of transmission media, and 
interference in multi-user environments. Therefore, the 
generalizability of the experimental results and their effec-
tiveness in real-world applications require further valida-
tion in future studies.

5.3 Future Prospects
The future research directions stemming from this study 
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are poised to address and transcend the current limitations 
by embracing innovative approaches. A pivotal area of 
focus will be the integration of artificial intelligence to 
enhance erasure prediction and recovery mechanisms, 
tailoring the response to the nuanced patterns of data 
loss. Additionally, there’s a drive towards the invention 
of novel coding structures that are adept at countering the 
specific challenges present in various data loss scenarios, 
potentially incorporating principles from graph theory or 
quantum error correction. The integration of these tech-
niques with existing RS codes could pave the way for the 
next generation of error-correcting codes.
Furthermore, the translation of these theoretical advance-
ments into tangible outcomes is emphasized through 
rigorous testing within real-world contexts, ensuring the 
proposed solutions are robust across diverse storage me-
dia and network conditions. There is also a recognition 
of the need to meticulously balance the computational 
complexity with the performance gains, to ensure that the 
decoding processes remain efficient without being prohib-
itively resource-intensive. Lastly, fostering interdisciplin-
ary collaboration will be key to harnessing a diverse array 
of expertise, paving the way for breakthroughs that can 
significantly bolster the reliability and integrity of data 
storage systems.
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