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Abstract:
In recent years, the emergence of Cyber-Physical systems (CPS), big data, cloud computing, and industrial wireless 
networks have promoted the development of Industry 4.0. Intelligent manufacturing systems are the leaders of this 
change. In smart manufacturing, the emphasis will be placed on using technologies such as big data analytics, cloud 
computing, edge computing, and artificial intelligence (AI). The advantages of new technologies are significantly 
reflected in the comparison of preventive maintenance and traditional maintenance based on intelligent technology: 
preventive maintenance significantly reduces the cost of prevention and, at the same time, dramatically improves the 
accuracy and timeliness of maintenance, bringing inestimable value to intelligent manufacturing. This paper will analyze 
new technologies’ innovative advantages and technical prospects through big data analysis and specific application 
scenarios of AI technology in preventive maintenance. Firstly, in data acquisition, this paper examines the architecture 
of preventive maintenance systems based on big data. Then, it analyzes the composition of the data pipeline: in the 
realization of data collection and processing in the field of cloud computing and edge computing, and the aspect of data 
processing, it discusses the participation of AI technology in data understanding and processing and the unprecedented 
changes it brings.
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1. Introduction
In recent years, advances in information physical systems 
(CPS), big data, cloud computing, and industrial wireless 
networks have driven the implementation of Industry 
4.0 [1]. Information technology is infiltrating all aspects 
of manufacturing systems [2] as well as other fields [3], 
accelerating the generation of big data in manufacturing 
[4]. Big data in manufacturing can be divided into three 
main types: device data, product data, and command data. 
Device data refers to the information generated by ma-
chines and equipment in manufacturing, such as operating 
temperature, speed, and power consumption. Product data 
refers to detailed information about the products being 
produced, including material composition, size, and qual-
ity control indicators. And about the command data refers 
to the instruction and control signals sent to the manufac-
turing equipment. It is the director of the production pro-
cess. New applications in manufacturing as well as new 
solutions are drawing inspiration from big data analytics, 
and new manufacturing process management and process-
ing models will bring unprecedented changes. Manufac-
turers, as monitors of the process, also get transformative 
experience improvements from it. They collect, store, and 

analyze the massive data of the manufacturing process 
through the cloud platform, and obtain comprehensive 
accurate, and even visual data monitoring. Beyond the ex-
amples provided above, big data can also enhance various 
aspects of manufacturing and even provide creative ap-
plications. This was previously unimaginable. Similarly, 
in terms of equipment maintenance, which is the focus of 
this paper, proactive preventive equipment maintenance 
based on big data is a typical example. In this new system, 
large amounts of production data need to be collected, and 
those data are studied to predict potential equipment fail-
ures and schedule maintenance activities accordingly. This 
inventive new maintenance structure significantly reduces 
the downtime required for maintenance and increases the 
overall efficiency of the manufacturing process. Proac-
tive equipment maintenance fully embodies the evolution 
brought by big data analytics in the manufacturing field 
discussed earlier.
Notably, equipment maintenance plays an important role 
in intelligent manufacturing, directly affecting equip-
ment’s service life and production efficiency [5]. Preven-
tive maintenance, in particular, has received a big deal of 
attention due to its ability to predict and prevent equip-
ment failures before they occur. Its preventive capabilities 
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need some help: RFID and the Internet of Things (IoT). 
With these techniques, preventive maintenance can track 
the life cycle of a product and establish important infor-
mation links with manufacturers. Under this situation, the 
emergence of “big data” allows for a new generation of 
maintenance, such as preventive and predictive mainte-
nance. Representative preventive and predictive proactive 
maintenance has apparent advantages over traditional 
decentralized maintenance by significantly improving the 
efficiency of equipment maintenance. Traditional meth-
ods usually focus on the logical relationship between 
equipment, shop floor, and plant during operation and 
maintenance. However, active maintenance simplifies the 
operational logic by mapping each element directly to the 
corresponding maintenance resource, Thus breaking this 
logical dependency. In addition, proactive maintenance 
enables dynamic monitoring of the status of the entire 
plant through a unified visual management. This mon-
itoring approach improves the timeliness and accuracy 
of maintenance compared to traditional decentralized 
maintenance practices with after-the-fact reporting modes 
while providing more precise insight into equipment op-
erating status for more informed decisions. Real-time pro-
active maintenance offers significant advantages in terms 
of response time compared to traditional decentralized 
maintenance and post hoc reporting models. Traditional 
maintenance models often employ a layered fault report-
ing approach, which often leads to delays in transmitting 
and processing fault information. Real-time active main-
tenance Through active reporting and real-time response, 
faults can be discovered and resolved promptly, improving 
the efficiency and flexibility of maintenance operations. 
That is to say, as maintenance gradually moves in this 
direction, the line between utility and repair will no lon-
ger be clear, and “maintenance will happen as long as the 
product is in use.”[6]
Through the research of big data technology and the 
achievements of current researchers, this paper analyzes 
the distinctions between preventive maintenance and tra-
ditional maintenance in many aspects such as working 
structure and efficiency. Meanwhile, this paper investi-
gates the application of big data technology in the cur-
rent field and studies the development prospects of new 
technologies including AI in manufacturing. Based on 
the aforementioned research work, this paper is divided 
into five parts. The rest of this article follows. Section II 
covers data acquisition, big data, and cloud computing in 
manufacturing. Section III gives examples of data pipeline 
architecture and cloud computing. Section IV presents 
the AI technology method for data processing. Section V 
summarizes this thesis.

2. System Architecture
In the traditional maintenance model, we usually follow 
a three-tier structure: production line maintenance, shop 
floor maintenance, and factory maintenance. In this mod-
el, however, when there is a malfunction or problem, the 
staff generates non-real-time reports, passes layer by lay-
er, and solves the problem in time. However, this model 
has one obvious drawback: lack of predictability. We can 
often only act accordingly after a problem arises, which 
inevitably increases production costs and complicates 
maintenance procedures.
The proactive preventive maintenance model based on 
big data has completely changed the situation. In this 
model, we can collect product data, equipment status up-
dates, facility logs, equipment alarms, production process 
information, and other relevant data through industrial 
wireless networks. These real-time data are transmitted 
to the cloud, where correlation analysis is carried out to 
reveal various relationships within the equipment. In this 
way, we can spot potential problems in time and predict 
possible equipment failures, enabling us to implement 
necessary maintenance measures in advance proactive-
ly. The significant advantages of a proactive preventive 
maintenance model based on big data compared to the 
traditional maintenance model can be concretely reflect-
ed in the technical aspects of data acquisition and data 
analysis. First of all, in terms of data collection, we use 
the industrial wireless network to achieve real-time data 
acquisition which eliminates the limitations of traditional 
inspection and manual recording: and reduces the error 
caused by human factors. At the same time, real-time data 
collection can also improve the accuracy and efficiency of 
data collection. Second, we leverage new technologies in 
data processing: big data analytics and machine learning 
techniques. These new technologies can deeply process 
and study big data, and discover the rules and problems 
hidden behind the data [5], letting data processing no lon-
ger require inefficient ways like human detection based on 
experience.
In this application context, we learned from the results 
of the researchers that they proposed the service-oriented 
industrial application architecture OPCUA, which is con-
sidered as one of the most promising breakthroughs in the 
field of data integration. The OPCUA architecture enables 
information sharing by integrating data between industrial 
systems, providing enterprises with an understandable 
data view. It can not only effectively solve the problem 
of data silos but also improve the accuracy and efficiency 
of decision-making through unified data management. 
Therefore, OPCUA architecture has been widely used and 
recognized in industrial automation, intelligent manufac-
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turing, and other fields. Active maintenance technology 
based on big data is essential to OPCUA architecture. 
The key idea is to carry out preventive maintenance on 
industrial equipment in real-time or offline to improve the 
reliability and working life of equipment. Active mainte-
nance technology mainly includes two types: mechanism 
of real-time active maintenance (MRAM) and mechanism 
of offline Prediction and analysis (MOPA). The former 
meets the high real-time requirements of equipment op-
eration and maintenance. MRAM aims to discover errors 
and handle real-time alarms by collecting and analyzing 
equipment data. This mechanism can ensure that the in-
dustrial system always maintains a stable working state 
during the production process and avoids production 
interruption or quality decline due to equipment failure. 
The latter mines the potential disturbance of maintenance 

projects, while MOPA focuses on the potential risk mining 
and failure prediction of maintenance projects. Through 
the analysis and mining of historical data, the potential 
problems and hidden dangers existing in the operation 
of equipment are found to provide accurate maintenance 
suggestions and preventive measures for maintenance 
personnel. In addition, MOPA is responsible for proactive-
ly implementing the required maintenance measures to 
ensure the equipment’s regular operation and production 
efficiency. In practical applications, MOPA can forewarn 
potential failure risks in advance, providing sufficient 
time for businesses to carry out maintenance and repairs. 
This reduces the losses caused by equipment failures and 
improves enterprises’ production efficiency and economic 
benefits (Figure 1).

Figure 1. The new mechanisms: MRAM and MOPA process equipment data to fix errors in 
real-time and predict errors before they occur. Then, equipment information will be presented 

on visual platforms to help producers understand the state of all equipment.
The critical components to implementing MRAM and 
MOPA are cloud layers, which play a crucial role in data 
processing and mining. To ensure efficient real-time pro-
cessing and data mining, the data processing system must 
have highly parallel processing capabilities, high through-
put data transmission, and robust communication. In the 
current research on real-time data processing, researchers 
have discussed the application scenarios of STORM re-
al-time computing system and Hadoop distributed parallel 
batch processing system [5]. We can see that the construc-
tion of data storage, monitoring, and computing modules 
can be realized by the integration of these two systems. 
Meanwhile, the efficiency and accuracy of real-time data 
processing can also be significantly improved in this inte-
gration. In addition, the researchers verified the effective-
ness of the offline prediction algorithm, a technique that is 
critical to MOPA, by conducting a series of experiments. 
Taking a machining center as an example, researchers 

compared the influence of offline prediction algorithms 
and traditional empirical estimation algorithms on tool 
life. By comparing their application in traditional machin-
ing processes such as cutting and drilling, they observed 
that the offline prediction algorithm provides more accu-
rate and effective tool life prediction.
Therefore, we can conclude that the OPCUA architec-
ture and its proactive maintenance technology based on 
big data provide strong support for data integration and 
preventive maintenance in the industrial field. By inte-
grating data resources between different systems, OPCUA 
realizes information sharing, providing enterprises with 
clear data views and decision support. Proactive mainte-
nance technology based on big data performs preventive 
maintenance on equipment in a real-time, offline way, im-
proving the reliability and service life of equipment. With 
the continuous progress of technology and the continuous 
expansion of application fields, it is believed that OPCUA 

3



Dean&Francis

and its related technologies will have a wider application 
in future industrial development.
In addition, it is noticeable that data format and data pre-
processing are also important links in the construction of 
a proactive preventive maintenance system based on big 
data. Since the types and formats of data generated by dif-
ferent devices may be different, we need to carry out uni-
fied format conversion and preprocessing of data to ensure 
its accuracy and consistency.

3. Data Pipeline
3 basic parts are included in the data pipeline wherein a 
modern manufacturing environment: data collection, data 
processing, and data analysis using AI. This new structure 
benefits the efficient use of more data in an industrial set-
ting, and enables manufacturers to gain valuable insights 
into their operations. (Figure 2)

Figure 2. The data pipeline of modern manufacturing includes three parts: data collection, 
data processing, and data analysis.

From Figure 2, the data collection is the fundamental 
of the next analysis for preventive maintenance. In data 
collection, we utilize industrial networks or the industrial 
Internet of Things (IoT) to collect and transmit various 
types of data to computing servers. These data include 
environmental indicators. After the data collection step, 
manufacturers can learn the production process. In this 
new pipeline, we used AI techniques and integrated them 
into the data mining and analysis phases. This innovation 
further increases the value of the pipeline. The ability of 
AI algorithms to sit through lots of data not only identifies 
patterns and trends that human analysts might miss, but 
also enables manufacturers to understand production effi-
ciency. As data pipelines are combined with new technol-
ogies, manufacturers can make more informed decisions, 
optimize operations, and reduce costs.
(1) Data Collection: Edge and Cloud Computing Para-
digms
When we review some examples derived from the real 
world, we can figure out cloud services hosted and provid-
ed by companies e.g. Amazon, Apple, Google, Microsoft, 
and Facebook that give manufacturers access to powerful 
computing resources on a pay-as-you-go basis. It is gen-
erally accepted that the intelligence and resource capa-
bilities required for IoT data processing are concentrated 
in cloud data centers. However, as technology advances 

and application scenarios become increasingly complex, 
this notion is being challenged. Traditional cloud-centric 
approaches to IoT, such as Amazon IoT and Google Cloud 
Data Stream, are shifting to a more distributed model. 
This shift is designed to take full advantage of intelligent 
and programmable cloud services at the edge of the net-
work, Including intelligent gateways (e.g. Raspberry Pi3, 
UDOO board, ESP8266) and network function virtualiza-
tion solutions (e.g. Cisco lOx, HP OpenFlow, Middle-box 
Technologies). These edge data centers offer computing 
and storage capabilities on a smaller scale than traditional 
cloud data centers while playing a vital role in real-time 
data processing. Two main benefits can be realized by 
bringing IoT data processing activities closer to the source 
or receiving point of the data transmission. First, it helps 
conserve energy consumption in resource-constrained 
edge devices. Under the current resource management 
model, where these devices are constantly uploading data 
to cloud centers to process tasks, by moving some of these 
tasks to edge data centers, we can both reduce the amount 
of data that is unnecessarily transferred and reduce the 
energy consumption of the devices, significantly extend-
ing the life of the devices while improving overall energy 
efficiency. Secondly, this distributed processing model can 
also minimize unnecessary network bandwidth consump-
tion. In the centralized cloud data center model, large 
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amounts of data need to be migrated between the Internet 
and public/private data centers. This not only exacerbates 
the risk of network congestion but also introduces poten-
tial delays and loss in data transmission. There is a solu-
tion: by distributing the data processing tasks over multi-
ple nodes at the edge of the network, the amount of data 
transmitted through a single node can be reduced, thus 
reducing the network bandwidth consumption[7]. This 
distributed processing reduces communication latency and 
dependence on migrating large amounts of data across the 
Internet and public/private data centers. Therefore, as an 
extension of existing IoT devices, edge data centers enable 
real-time monitoring and optimization of manufacturing 
processes by providing improved processing and storage 
capabilities. At the same time, edge data centers can also 
adopt various mechanisms to process data on behalf of 
IoT devices. It is only migrated to a remote cloud data 
center when more complex analytics are required or edge 
processing capabilities are not available. As the number 
of IoT devices continues to proliferate, the demand for 
efficient processing and storage of the data sets they gen-
erate is also increasing. We can see that this fragmented 
shift has a profound impact on IoT applications. Edge 
data centers meet these requirements well while improv-
ing the performance and reliability of IoT applications. At 
the same time, its functionality and performance are also 

constantly being upgraded with the advancement of tech-
nology. We can expect to see more intelligent algorithms 
and machine-learning techniques applied to edge data 
centers for more efficient data processing and analysis. 
Meanwhile, as network technology evolves, collaboration 
and communication between edge data centers will also 
become more efficient and reliable.
(2) Data Processing: AI Technology
The use of AI technology and intense learning has be-
come the most effective and cutting-edge method in fault 
identification of systems and equipment based on big 
data analysis. The importance of AI in extracting valu-
able knowledge from big manufacturing data cannot be 
overlooked, as it forms the key to enabling intelligence in 
industrial environments. The Data-Information-Knowl-
edge-Wisdom (DIKW) hierarchy, often referred to as the 
DIKW pyramid, provides a comprehensive framework 
for understanding the evolution of Data into intelligence. 
(Figure.3) This hierarchy includes four layers, with data as 
the foundation. Information is the next layer, representing 
organized and processed data. Knowledge is on the top of 
information and involves understanding and interpreting 
information, often through patterns and insights. Finally, 
wisdom, located at the top of the pyramid, means the ap-
plication of knowledge to making informed decisions and 
judgments.

Figure 3. DIKW hierarchy, also known as the DIKW pyramid, consists of four parts and has 
an ultimate goal: getting wisdom.

The DIKW hierarchy provides a valuable framework for 
understanding the transformation of raw data into valuable 
insights and wisdom when leveraging AI technologies. 
Not only as the embodiment of artificial intelligence for 
data research, DIKW hierarchy is widely used in the field 
of information science and information management as a 
data research tool. In research in information science, re-
searchers use the DIKW model to explain the logical and 

conceptual frameworks that they find relevant. Especially 
in the study of those frameworks related to knowledge and 
epistemology, the role of this model is particularly signif-
icant. In another area, business managers responsible for 
information management have recognized the importance 
of the DIKW model in solving real-world challenges, es-
pecially those involving information utilization and man-
agement[8].
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4. Discussion
In the previous discussion in this paper, we can learn a 
completely new data analysis system: a manufacturing 
maintenance knowledge base built on manufacturing big 
data. Its functions include: information analysis, which 
enables manufacturers to understand the complex work-
ings of their equipment; The identification of patterns and 
trends that allow and predict potential problems before 
they occur. By building this knowledge base, manufac-
turers can develop proactive and predictive strategies that 
significantly reduce downtime. It relies on a combination 
of edge computing and cloud servers in the data collec-
tion phase to process the large amount of data generated 
by manufacturing devices. By using an onboard server 
near the device, it allows data processing to take place 
online and near the data source. As a result, it can provide 
low-latency (real-time) services. This method can quickly 
respond to the change of equipment state, and is especial-
ly suitable for real-time monitoring applications. At the 
same time, we can not ignore the high computing power 
of cloud servers, which makes them useful in processing 
big data offline. Cloud environments provide the scalabil-
ity and flexibility needed to handle the growing volume of 
data generated by manufacturing operations. In addition, 
cloud environments enable manufacturers to share data 
and collaborate with other organizations, thus facilitating 
innovation and knowledge sharing within the industry. 
And in the next data processing stage, it is crucial to elim-
inate redundant and misleading data. This cleaning pro-
cess ensures that only relevant and accurate information 
can be used for further analysis. As the data is cleaned, the 
program abstracts it into real-time or historical big data 
analytics. This analysis can be used as a basis for equip-
ment maintenance decisions and can also provide valuable 
insights into the status and performance of manufacturing 
equipment. Therefore, data processing devices such as 
computer servers play an important role in data process-
ing. The computer server performs the data analysis re-
sults are then transmitted to a data management or visual-
ization system. So these systems allow manufacturers to 
visualize the data meaningfully, such as through charts, 
graphs, and dashboards. This visualization not only makes 
the data more accessible to understand but also enables 
manufacturers to quickly identify trends and patterns. In 
addition, it facilitates decision-making, enabling manufac-
turers to make correct choices in equipment maintenance 
and operational strategies.
In the future, we can tell that the development of various 
information transmission processing equipment, such as 
computer servers, will also drive the further improvement 
of proactive preventive maintenance capabilities and ef-

fectiveness, bringing more opportunities for application 
and providing more timely, accurate, and economical 
equipment maintenance for the manufacturing industry.

5. Conclusion
In conjunction with the development trend of digital man-
ufacturing in the era of Industry 4.0, this paper discusses 
the advantages of big data analysis and artificial intelli-
gence technology in proactive preventive maintenance, 
comparing it with the traditional mode and the techno-
logical innovation of data pipelines in the new era. First, 
within the framework of the preventive maintenance ar-
chitecture, new intelligent maintenance methods utilizing 
big data analytics show high efficiency and predictability. 
This intelligent maintenance method not only significantly 
reduces maintenance costs but also enhances the flexi-
bility and adaptability of the entire maintenance process. 
Second, in terms of data transmission, big data-driven 
maintenance has significant advantages with the help of 
IoT technology. With the further development of Industry 
4.0, big data and artificial intelligence technologies will 
play an increasingly important role in preventive main-
tenance. In the future, we can foresee that these technol-
ogies will further promote the intelligent and automated 
development of preventive maintenance, creating more 
excellent value for enterprises. Besides, we also need to 
pay attention to the equipment and algorithms that support 
this intelligent maintenance and believe that the develop-
ment of these technologies will also bring more powerful 
utility and more application possibilities for preventive 
maintenance.
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