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Abstract:
The general linear group, as a significant topic in algebra and topology, has a wide-ranging research background 
and application value. With the continuous advancement of mathematical research, the combination of topological 
structures and automorphism structures has become a key entry point for exploring the properties of the general linear 
group. This paper investigates the topological properties of general linear group GL n( , ) , specifically focusing on 
compactness, connectedness and the fundamental group, and the automorphism. The first part of the study is dedicated 
to a detailed analysis of these properties, providing new insights into the topological structural characteristics of 
GL n( , ) . This paper scrutinized the homotopy type within it, giving proof to the fundamental group of GL n( , ) , 
which is showed to be isomorphism to a trivial group. In the second half, This paper introduce and examine the function 
φ (G A GL n G A G) = ∈ ={ ( , ) | • } , which is used to identify the automorphism group of a dense subgroup G  of n

. Specifically, the automorphism group of n  is investigated. This paper show that the automorphism group of it is 
isomorphic to the subgroup GL n( , )  of general linear group GL n( , ) . Through this function, this paper offer an 
innovative approach to understanding the automorphisms within general linear groups, revealing the deep connections 
between algebraic and topological aspects of these groups.
Keywords: General linear group; Topological properties; Homotopy; Algebraic structures.

1. Introduction
In the intersection of topology and algebra, this study 
systematically explores the topological properties of the 
general linear group, such as connectivity, compactness, 
and homotopy, while also delving into the structural char-
acteristics of its automorphism group. These properties 
not only enhance our understanding of the general linear 
group but also hold significant theoretical and practical 
implications in fields like modern mathematics and phys-
ics. The research of general linear group GL n( ,)  has 
long been playing an important role in algebra and topolo-
gy, influencing many areas related to mathematics. These 
groups, composed of all invertible n n×  matrices over the 
real numbers, possess complex topological properties and 
automorphism structures. As a result, they remain central 
to contemporary mathematical research, offering deep in-
sights across a wide range of mathematical disciplines.
For instance, the property of homotopy is crucial to un-
derstand. The theorem by Beben and Theriault in 2022 
on homotopy fibers demonstrates that comprehending the 
changes in the homotopy type of a space following a cone 
attachment is a fundamental challenge in algebraic topol-
ogy. This is particularly relevant in the context of the LS 
category, where the impact of such attachments has been 

extensively studied by researchers such as Kishimoto and 
Minowa in 2024, Félix and Thomas in 1989, and Hess 
and Lemaire in 1996, among others. Additionally, the sig-
nificance of homotopy is further elucidated in essays by 
Huang and Theriault from 2022 and 2024, which highlight 
the role of homotopy in the loop space decomposition of 
manifolds [1-6].
Recent study of Vitalij and Dimitri (2020) demonstrat-
ed that subgroups of GL n( , )  are g-reversible for any 
positive integer n , using the property of automorphism 
[7]. The concept of g-reversibility extends the notion 
of reversibility from topological spaces to topological 
groups, where a group is g-reversible if every continuous 
automorphism is open. This idea has crucial implications 
for various classes of groups, including Polish groups and 
locally compact σ-compact groups, emphasizing the role 
of automorphisms in preserving topological properties 
within general linear groups. Additionally, the thesis “Au-
tomorphic Representations and L-Functions for GL(N)” 
by Goldfeld and Jacquet (2021) underlines the importance 
of automorphism in general linear group, which reinforces 
the research’s aim to discover the automorphism group of 
it [8].
These results allow us to visualize how important it is 
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to study these properties of GL n( ,) . Therefore, this 
research seeks to explore the topological properties of 
GL n( ,) , with a particular focus on its connectedness, 
compactness, and homotopy type. In addition, by examin-
ing the automorphism structures, this paper can gain more 
understanding into how these groups interact with various 
mathematically relevant domains and how their symme-
tries are expressed in different contexts.

2. Related Lemmas and Proofs
Before starting to study the properties of GL n( , ) , This 
paper need to know some lemmas first, which will facili-
tate our further understanding and proof.

Lemma 1:
For a subset S  of Euclidean space n , the following two 
statements are equivalent:
S is closed and bounded
S  is compact, that is, every open cover of S  has a finite 
subcover (Heine-Borel Theory) [9, 10].
Proof:
S is compact ?S  is closed and bounded.
Suppose S ⊆  is compact.
Take any limit point s  of S .

For each n∈ , consider the open interval ( , )s s− +
1 1
n n

. The collection of these intervals forms an open cover of 
S . By compactness, there is a finite subcover, meaning x  
must be in one of these intervals. Thus, s S∈ , and S  con-
tains all its limit points, making it closed.
C o n s i d e r  t h e  c o l l e c t i o n  o f  o p e n  i n t e r v a l s 
{( 1, 1) | }.− − + ∈r r r   This collection covers   and 
hence covers S . By compactness, there is a finite subcov-
er; hence S must be contained in some union of these in-
tervals, say the union to be ( 1, 1).− − +r ri j  Therefore, S  is 
bounded.
Now, using cartesian product to construct a subset in high-
er dimension gives us the property of S n .
S is closed and bounded ?S  is compact.
Let (sn )n  be a bounded sequence in S . Since every 
bounded sequence in finite-dimensional space has a con-
vergent subsequence, (sn )n  has a convergent subsequence 

(sni
)

ni
. Denote the limit of (sni

)
ni

 lim s s
i→∞ ni

= , then s S∈  

for S  is closed. Therefore, the sets of some elements in 
subsequence can be the finite subcover and makes S  com-
pact.

Lemma 2:
The determinant function det GL n: ( , )? 0 { }   con-
tinuous.
Proof:

The formula of determinant is A sgn a=
σ
∑
∈Sn

(σ )∏
i=

n

1
i iσ ( )

, where σ  is a permutation of the n entries and, Sn  is 

the set of all the permutations and sgn(σ )  is the sign of 

permutation. Set Ax0
is a continuous transformation of Ax . 

Want to show:

When x x A A→ →0, .x x0

Consider.

	 Ax0
=
 
 
 
  a x a x

a x a x11 1

n nn1

  

(

(

)

)





n (

(

)

)
, 

	 A sgn a xx0
=

σ
∑
∈Sn

(σ )∏
i=

n

1
i iσ ( ) ( ) � (1)

Because the map x a x ij ( )  is continuous, so their mul-
tiplication and addition are continuous too, which means 
the function is continuous.
Lemma 3:
X  is a topology space, X  is connected if and only if the 
locally constant function makes every element in X  a 
constant.
Proof:
Necessity: Assume X  is connected.
Consider the map φ : ?X S , where S = {0,1} .
Create two open sets: 
{0 | 0 1 | 1} = ∈ = = ∈ ={x X x and x X xφ φ( ) } { } { ( ) } .

{0 1 , 0 1}∩ =∅ ∪ ={ } { } { } X � (2)
See that the complements of the two sets are the opposites 
of themselves, so the two sets are both open and closed. 
However, X is connected which means the only open and 
closed subset of X  is X  itself. Without loss of generality, 
This paper can let {0} = ∅ , and now {1} = X .
Sufficiency: Assume the locally constant function makes 
every element in X  a constant.
Prove by contradiction. If X  is not connected, then 
there exist two open subsets of X ,  namely A B, , 
where A B A B X∩ =∅ ∪ =, . Consider the map φ  and 

a A b B a m b n∈ ∈ ⇒ = =, , .φ φA B( ) ( ) It is easy to confirm 
the map is a locally constant function but leads to a con-
tradiction for the two subsets have two different constant 
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images.
Lemma 4:
The fundamental groups of two homeomorphic spaces are 
isomorphic.
Proof:
Let X Y,  to be two homeomorphic spaces with a map 
F X Y: ? . Consider a map.
	 f X x Y y: , ,π π1 0 1 0( ) → ( ) � (3)

Such that for a path γ x  in X  based at x0 , f (γ x )  is a path 

in Y  which takes y F x0 0= ( )  as the base. To check the 

map is well-defined, let  γ x1
, γ x2

to be two homotopic 
paths in X .  Since F  is a continuous map, the images 

must be homotopic too. For two elements   γ x1
 and [ ]γ x2

 

in π1 0(X x, ) .

	           

f f

f f F

(
(

(
F F F F

   

          

   

° ° ° = ° ° =

γ γ γ γ γ γ

γ γ
F x F x F x F x

x x x x F x x

x x

1 2 1 2 1 2

1 2

γ γ γ γ

)

° = ° = ° ° =

1 2 1 2

°

) (
(

)

)
)
(

(
)

)
  

(
(

)
)

� (4)

This shows that the map f  is a homomorphism.
Injective:

If f F(  γ γx F x1 1) = °  ( )  is a trivial element, then γ x1
 is, 

by definition, an identity path and [ γ x1
] is the identity.

Surjective:

For some   γ y  in Y , let γ y  to be a representative, 

such that γ y : 0,1 .[ ]→Y  Because F  is a homeomor-

phism, there exists γ x : 0,1[ ]→ X  for all γ y  such that 

F° =F x yγ γ .

This paper see f  can be an isomorphism between the fun-
damental groups of two homeomorphic spaces.
Lemma 5:
Every dense subset A  of n  contains n  vectors that form 
a basis of n .
Proof:
Let A⊂ n  be a dense subgroup. This paper need to show 
that A  contains n  vectors that are linear independent, 
which will form a basis for n .
Since A  is dense in n , there exists a vector v A1∈  such 

that v1 ≠ 0 . This is because the only vector that cannot be 
approximated arbitrarily closely by non-zero vectors is the 
zero vector itself, and A  being dense implies it contains 
non-zero vectors.
Assume k  linear independent vectors are chosen to be 

in A , and consider a set of all the vectors in n  that can 
be noted as x v x v x v1 1 2 2+ + + k k . The set is a subspace 

of n  of dimension k . Therefore, { , , , }v v v1 2  k  cannot 
cover n . Since A  is dense in n , there exist some vec-
tor v v v vk k+1 1 2∉{ , , , }  such that vk+1  is arbitrarily close 
to some vector which is not in the span either. Continuing 
this construction gives us a final basis { , , , }v v v1 2  n  of 


n .
Lemma 6:
Let G  be a divisible subgroup of  , then the following 
holds:
	 ( \{0}) ⋅ =φ φ(G G) ( ) � (5)

( \{0}) ⋅ ⊆I Gφ ( )  ( I  is the identity of φ (G) ).

If γ δ δ γ° = °  for all γ φ∈ (G) , where γ δ φ, ∈ (G) , then 

φ φ δ(G G) ⊆ ( ( )) .

	 φ (G x x G G) = ∈ ⋅ ={ \{0}| } � (6)
Proof:
S i n c e  G  i s  s e t  t o  b e  d i v i s i b l e ,  t h e  e q u a t i o n 

( \ 0{ }) ⋅ =G G  h o l d s .  S u p p o s e  ψ φA ∈ (G)  a n d 

q∈ \ 0{ } ,  t h e n  q G q G G G⋅ = ⋅ = =ψ ψ ψA A A( ) ( ) ( ) . 

Therefore, by definition, q G⋅ ∈ψ φA ( ) . And this gives to 

( \ 0{ }) ⋅ =φ φ(G G) ( ) .

Since I  is the identity of φ (G) , this follows from a).

For γ δ φ, ∈ (G) , 

γ δ γ δ δ γ δ γ δ( (G G G G G)) = ° = ° = =( ) ( ) ( ( )) ( ) . 

That is γ φ δ∈ ( (G)) . Because γ  is chosen arbitrarily, 

φ φ δ(G G) ⊆ ( ( ))  holds.
This is clear once we let x A=  to be a one entry matrix.
3. Topological Properties of GL n( , )

3.1 Compactness
Relatively, compactness for the general linear group is 
easier to discover by Lemma 1, This paper will show 
property first.

3.1.1 Non-compactness of GL n( , )
Proof:
By Lemma 1, one way to check is GL n( ,) is compact 
is to discuss if it is closed and bounded at the same time. 
Consider a diagonal matrix.

	 A diag x=  
 
 

, ,1, ,11
x


n n×

� (7)
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When x  goes infinite, the determinant of A  goes infinite 
too. So, the elements in GL n( ,)  cannot be contained in 
a bounded set, which means the group is not bounded.
3 . 1 . 2  P r o p o s i t i o n :  O n e  c o m p a c t  s u b g r o u p  o f 
GL n O n( ,) − ( )
Proof:
As we know, every element O O n? ( )  satisfies O O IT = , 

where OT  is the transpose matrix. O  is called the orthog-
onal matrix consisting of identical column vectors. As this 
defined, ¡¬ ¡¬O n= , which means O n( )  is bounded by 

the map * : ? 

n .
Next, what is left needs to be done is to prove that the set 
is closed. Since elements in the set is bounded, This paper 
can consider a convergent sequence (Ox )x  with the limit 

of the sequence Ok  being outside of the set, then there 

must exist  > 0 , such that B O O n( k ,)∩ =∅( ) . Howev-

er, for all  > 0 , there exists N > 0 , such that for x N≥ ? , 

O B Ox k∈ ( ,) , and this leads to a contradiction. Therefore 

O n( )  is a quasi-compact set. Because O n( )  is Hausdorff 
space, it is compact space.

3.2 Connectedness

3.2.1 Proposition: The subgroup SL n( ,)  of GL n( ,)  
is connected

Proof:
Define a map β : , ?SL n( ) Λ , where the discrete topol-

ogy is given to Λ ={1} . This can also be defined as the 
determinant function since all the determinants of the 
matrices in SL n( ,)  are equal to one. It is not hard to see 

SL n( ,)  is connected by Lemma 3.

3.2.2 Two connected components of GL n( ,)
Proof:
Say GL n( ,)  has two connected components. This paper 
will give proof to why it contains two connected compo-
nents latert.
Consider a diagonal matrix D diag d d d= ( 1 2, , , n )  and a 
map.
	 h GL n SL n: , ,(  ) → ( ) � (8)
	 AD B→ � (9)
Here one must prove the map works. As we know, the 
matrix in SL n( ,)  has a determinant of one. This pa-

per just need to make AD =1 . Because AD A D= × , 

A D d≠ =0, ∏
i=

n

1
i , This paper can divide A  at both 

sides and get ∏
i=

n

1

di =
1
A

. One simple way to derive the 

matrix D  is to let all the d s have the same value, that 

is d =
 
 
 

1
A

1
n

 and a little bit more change when the A  

changes between positive and negative (when A < 0
, This paper need to put a negative sign before d ). This 
paper has a map that maps all the elements in GL n( ,)  

to SL n( ,) , so GL n( ,)  is connected depending on dif-
ferent components.
It is time to prove it has two connected components, 
namely X and Y. Consider a path.
	 p GL n: 0,1 ,[ ]→ ( ) � (10)

Such that p X(0) = , p Y(1) = . And consider a composite 
function.
	 f t det p t( ) := ( ( )) � (11)

By Lemma 2, f t( )  is a continuous function too. If for 

∀ ∈ ∈x X y Y, , their determinants have different sign, then 

f t( )  must have different sign too which means it needs 
to continuously convert from positive to negative or the 
opposite. This leads to a contradiction because f t( )  is 

continuous and there must exist f (α ) = 0  which is not 

contained in GL n( ,) . At the same time, GL n( ,)  is, 
by definition, not a path-connected space as we cannot 
find a continuous path between the two connected compo-
nents.

3.2.3 Proposition: Connected components of GL n( ,)  
is path-connected

Proof:
Take the one with elements of positive determinants. Con-
sider a map H GL n GL n: , 0,1 ,(  )+ +

× →[ ] ( ) , such that 

H A t tA t I( , (1 )) = + − n , where A GL n∈ ( ,)+  and In  is 
the identity with positive terminant. It is not difficult to see 
the path is continuous. For another connected component 
GL n( ,)− , set the path to be H B t tB t I( , (1 )( )) = + − − n , 

where B GL n∈ ( ,)−  and det I(− = −n ) ( 1)n .

3.3 Homotopy
Discussing homotopy within the general linear group, the 
fundamental group offers a valuable perspective, encom-
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passing concepts like homotopy paths and linear homoto-
py. This section will explore the fundamental group of the 
general linear group from two different situations.
3.3.1 The fundamental group of general linear group when 
n =1
For n =1 , GL (1, 0 ) = '{ }  can be viewed as two 
disjoint connected components for one contains pos-
itive numbers and the other contains negative, that is 
GL (1,  ) = ∪− +' '  . Intuitively,  − +', '  are homeo-

morphic to the interval (0, )∞  in  . Under proposition 
3.2.3, consider a representative path f  of an equivalence 

class of paths [ f ]  in (0, )∞ , since the start and end of 

the path must be the same, f  is simply a path stays at the 

same point, and that implies π1 (+ )  only has identity 

path as its element. Otherwise, if f  moves, there must 
exists a reentry in the path, which This paper called a dis-
continuity, which makes f  discontinuous. Therefore, the 

fundamental group π1 (+ ) is equal to E trivialgroup( ) . 

By Lemma 4, that is.

	 π π1 1( + ') ≅ =( + ) E � (12)

	 π π1 1( − ') ≅ =( − ) E � (13)

Because these two spaces are disjoint,  GL (1,)  

can also be written as { , } − +' ' . It is easy to see 

π π π1 1 1(GL I f f f f(1, , { , }  ) ) = ∈ ∈[ I I I I+ − + − + +], |[ ] ( ' ') ( )

. Hence π1 (GL I E(1, ,) ) = .

3.3.2 The fundamental group of general linear group 
when n >1

Still see the two connected components GL n( ,)+  

and GL n( ,)+ independently first. Consider the fun-

damental group of GL n( ,)+  at base In  and two 

paths γ In
 and γ x ,  where γ x n(0) = I  and γ x n(1) = I

. Consider a map H GL n: 0,1 0,1 ? ,[ ]×[ ] ( )+ , such that 

H A t t A t( , (1 )) = + −γ γx I( )
n
 for ∀ ∈t A, 0,1[ ] . When t = 0

, H A( ,0) = γ In
, and this is the identity path sends identity 

to identity. When t =1 , H A A( ,1) = γ x ( ) , and when A  

varies, the path becomes a loop based at In . Since map 

H  is continuous, γ x  and γ In
 are path-homotopy, which 

means any path of GL n( ,)+  can be homotopic to the 
identity path. In conclusion.

π γ1 (GL n e E( ,)+ ) = = ={  In } { } � (14)

Additionally, π1 (GL n I E( , , .) n ) =
4. Automorphism Groups of a Dense Subgroup G  of n

4.1 New Definition and Identification
To find out the automorphism groups of dense subgroups 
G  of n , This section will introduce a new definition that 
is.
φ (G A GL n G A G) = ∈ ={ ( , ) | • }  where 

G A g A g G• { • | }= ∈ .
F o r  t h e  s p a c e  n ,  i t  i s  n o t  d i f f i c u l t  t o  s e e 

φ ( 

n ) = GL n( , ) . This paper need to show that the au-

tomorphism group of G  can be identified as the newly 
defined φ (G) .
Consider a map.
	 f G Aut G:φ ( )→ ( ) � (15)
It is necessary to show the map is an isomorphism.
Proof:
Looking back at the definition of φ (G) , the element in 
the set is defined to keep the group G  with right sca-
lar multiplication. Thus, it is direct to induce the map 
f A( ) =ψ A , where ψ A  is an automorphism of G ( such 

that ψ ψA A: ? , •G G g g A( ) = ). In another word, A  is a 
map sends G  to itself, and it follows a more general de-
notation of general linear group which is GL V( ) . For ev-

ery element in GL V( ) , it is defined to be a bijection that 
sends the vector space V  to itself. Sometimes, view A  as 
a map denoted as ψ A  for better proof.

To show the map f  is well-defined, this paper can con-

sider A  to be a map as the element in GL V( ) , which is 
bijective and invertible. As we constructed before, the 
property of homomorphism is easy to get. To check its bi-
jectivity, consider ψ ψA A(g g1 2) = ( ) , then g A g A1 2• •=

, which implies g g1 2=  due to the bijectivity of A . Thus, 

ψ A (g )  is injective. Similarly, for any h G∈ , since A−1

exists, there exists some g G∈  such that h g A= ⋅ , mak-

ing ψ A (g )  surjective.
Under this circumstance, this paper are able to tell if the 
map is an isomorphism.
Homomorphism:
f A B g A B f B f A( • • •) = = = ° = °ψ ψ ψA B B A• ( ) ( ) ( ) � (16)
Where °  denotes as the composition of the automor-
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phisms in Aut G( ) .
Injectivity:
S u p p o s e  f A f B( ) = ( )  f o r  A B G, ∈φ ( ) ,  t h a t  i s 

g A g B⋅ = ⋅  for all g G∈ . Since the group function is de-
fined to be the scalar multiplication of matrices, A  and B  
must be the same, which means every element in Aut G( )  
has an inverse image.
Surjectivity:
Let ψ ∈ Aut G( )  be an arbitrary element in Aut G( )
. Since ψ  is an automorphism of G , there exists an 
A GL n∈ ( , )  such that ψ (g g A) = ⋅  for all g  in G . 

Therefore, for this A  have f A( ) =ψ  which shows f  is 
surjective.
Up to now, it is clear that can construct an isomorphism 
between φ (G)  and Aut G( ) , and this paper going to use 

φ (G)  to identify Aut G( )  for contents below.

4.2 Property of the New Definition
For the new definition, a property φ (G Aut G G) = ≤( )  
is satisfied. In this section later, proof of this property is 
displayed.
By Lemma 5, suppose a basis { v v v v1 2 3, , , , } n  of n

, where v Gn ∈ ⊆ n . For elements in φ (G) , take an ar-

bitrary element ψ A  as an example, ψ A n(v G)∈  for all 

n≥1 . Therefore, ψ A  is determined by its action on this 
basis. Consider a map:
	 ϕ φ: ?(G G) n � (17)

The map ϕ  is injective because distinct matrices in φ (G)  
induce distinct transformations on the basis of n  which 
consists of elements in G . And this gives the conclusion 

that φ (G G)≤ n . Since G  is dense in n  and n  is finite, 

G  must be infinite, which means G Gn = . Therefore, 

φ (G G)≤ , and by the isomorphism created before, 

φ (G Aut G Aut G G) = ⇒ ≤( ) ( ) .

4.3 The Automorphism Group of n

Recall: A group G  is said to be divisible when for every 
g G∈  and every integer k ≠ 0 , there exists h G∈  such 
that g k h= ⋅ .

that Aut GL n(  

n n) ≅ =φ ( ) ( , ) .

4.3.1 φ ( 

n ) ⊆ GL n( , )

Proof:

Consider A∈φ (n ) . By definition, A  takes vectors in 



n  to vectors in n . Let A a= ( ij ) , This paper need to 

show every aij  is rational. Consider the standard basis 

vectors e e e1 2, , , i , where ei  has 1 in the i -th position 

and 0 elsewhere. Thus, Aei ∈
n  and.

	 Aei =

 
 
 
 
 
 

a

a

a



1

2

ni

i

i � (18)

Since Aei ∈
n , every a ji  must be a rational number for 

all j n=1,2, , . These above show that every aij  of A  is 

rational for multiplying ei  does not change the value of 
every entry in A . Because A  contains entries with ratio-
nal values and is invertible, A GL n∈ ( , ) , furthermore, 

A  is chosen arbitrarily, that is φ ( 

n ) ⊆ GL n( , ) .

4.3.2 GL n( , ) ⊆φ ( n )
This way is relatively hard to show, and now must prove a 
proposition first.
4.3.2 .1  Proposi t ion:  For  a  subgroup H  of   , 

GL n H( , ) ⊆φ ( n )  if and only if H  is divisible

Proof:
Sufficiency:
Suppose H  is divisible.

Let GL n Q q( ,)� = ( ij ) , then qij ∈ . If qij = 0 , then 

H q H⋅ = ⊆ij {0} .  If  qij ≠ 0 , then qij ∈ \ 0{ } .  From 

Lemma 6 b), This paper know that  \ 0{ }⊆φ (H )
,  and  so  q Hij ∈φ ( ) .  By  Lemma 6  d ) ,  q H Hij ⋅ =

. Now, construct H n  by using the cartesian product, 

that is H H H Hn = × × ×
n
?
 , and pick an element hi  in 

every H  such that H h h h hn � = ( , , , )1 2  i . Therefore,  

h Q h q h q h q h q H⋅ = ⋅ ⋅ ⋅ ⋅ ∈{ , , , , }∑ ∑ ∑ ∑
i i i i= = = =

n n n n

1 1 1 1
i i i i i i i in1 2 3 

n .

That is
H Q Hn n⋅ ⊆ .

Inversely, since Q GL n−1∈ ( ,) , then.

	 H Q Hn n⋅ ⊆−1 � (19)

Multiplying Q  at both left sides, this paper get 
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H H Qn n⊆ ⋅ . Here conclude that H Q Hn n⋅ = , and, by 

Lemma 6 d), Q H∈φ ( n ) . Since Q  is chosen arbitrarily, 

GL n H( , ) ⊆φ ( n ) .

Necessity:

Assume GL n H( , ) ⊆φ ( n ) .

Proof by contradiction. If H  is not divisible, there ex-
ists a non-zero integer k  such that k H H⋅ ≠ . Suppose 
A GL n∈ ( ,)  s u c h  t h a t  A k I= ⋅ n ,  A H H⋅ ≠n n .  A s 

proved, A H∉φ ( n ) .

Now, by proposition 4.3.2.1,  as   is  divisible, 

GL n( , ) ⊆φ ( n ) . And this gives the final conclusion 

that φ ( 

n ) = GL n( , ) . Up to now, the automorphism 

group of the dense subgroup n  in n  is identified.

1. Conclusion
In this essay, three topological properties and the auto-
morphism structures in general linear group GL n( , )  is 
showed, and some lemmas are given proof.
In section 3, first, it is stated that GL n( , )  is not com-

pact, but its subgroup O n( )  (the orthogonal group) 
is compact. Then, the two connected components of 
GL n( , )  are carried out with the additional information 
that each of the connected component is path-connected. 
Furthermore, the fundamental group π1 (GL n I( , ,) n )  is 
proved to be equal to the trivial group E .
In section 4, one example of automorphism groups 
of a dense subgroup G  of n  is chosen to be dis-
played, which is the automorphism group of n

. In the beginning of this section, a new equation is 
de f ined  such  tha t  φ (G A GL n G A G) = ∈ ={ ( , ) | • }

, where G A g A g G• { • | }= ∈ . Additionally, an iso-

morphism is constructed between φ (G)  and Aut G( ) , 

which is used to identify Aut G( ) . As the essay showed, 

Aut GL n(  

n n) ≅ =φ ( ) ( , ) .

The implications of this work extend beyond the immedi-
ate findings. The methods and results presented here open 
new possibilities for research in both algebraic topology 
and group theory. Future studies could build upon this 
foundation by exploring more complex generalizations 

of φ (G)  or applying these concepts to other groups. In 
addition, the interaction between topological properties 
and automorphisms discovered in this study may inspire 
further research on the classification of topological groups 
based on automorphic structures. For instance, this con-
cept can be used in other fields where understanding 
symmetry and structural stability is important. Disciplines 
such as physics, computer science, and even data analysis 
are increasingly dependent on the structural continuity of 
networks and systems and can benefit from the mathe-
matical framework established in this essay. The compre-
hensive exploration of general linear groups and the auto-
morphisms is not only a theoretical work, but is expected 
to have practical applications, laying the foundation for 
innovative methods and interdisciplinary breakthroughs in 
the foreseeable future.
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