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Abstract:
Multifractal analysis provides a detailed approach to examine complex systems with varying scaling behaviors across 
multiple time scales. In this article, multifractal detrended fluctuation analysis (MFDFA) is applied to the index returns 
of Netflix from 2019 to 2024. The purpose is to uncover the multifractal nature of financial data through analyzing 
original, shuffled and surrogate time series and to identify sources of multifractality, particularly focusing on the roles 
of fat-tailed distributions and temporal correlations. This article finds out that even after shuffling, which disrupts time-
dependent correlations, the multifractality still remains or even intensifies. Meanwhile, the surrogate data is investigated 
to study the sources of multifractality. The results show that Netflix stock returns exhibit clear multifractal properties, 
primarily driven by fat-tailed distributions rather than long-term correlations. In general, multifractal detrended 
fluctuation analysis provides important insights into the complex dynamics of financial markets, and it demonstrates 
how multifractal analysis can reveal underlying structures that traditional methods often overlook. These findings have 
implications for better risk management and market analysis by acknowledging the critical role of extreme events and 
distributional characteristics in stock market behavior.
Keywords: Multifractal analysis; financial time series; Netflix index returns.

1. Introduction
Multifractal analysis is an advanced mathematical frame-
work used to study and characterize complex systems that 
exhibit variability across multiple scales. Unlike tradi-
tional fractal analysis, which typically assumes a unique 
scaling exponent, multifractal analysis accommodates a 
spectrum of scaling exponents, allowing for a more de-
tailed and nuanced understanding of phenomena that are 
inherently heterogeneous. This makes it particularly valu-
able in studying real-world systems where uniform scaling 
laws do not apply [1].
One of the most prominent techniques within the field of 
time series analysis is multifractal detrended fluctuation 
analysis (MFDFA). It has been developed to analyze non-
stationary time series data, where the mean and variance 
can vary over time [2]. By systematically removing trends 
of varying orders, multifractal detrended fluctuation 
analysis isolates the intrinsic fluctuations of the data, this 
makes the detection of multifractality easier [3]. MFDFA 
technique has become indispensable in various fields due 
to its robustness and versatility in dealing with real-world 
data, which are often noisy, incomplete, and influenced by 
external factors [4].
In finance, for instance, MFDFA is widely used to analyze 
financial markets, particularly in understanding price fluc-

tuations and market volatility [5]. Huge fluctuations can 
influence the multifractality of time series, typically the 
extreme events like market crashes [6]. Traditional mod-
els that assume a random walk or a normal distribution of 
returns fail to capture the extreme variations observed in 
financial data [7]. However, MFDFA can reveal hidden 
multifractal structures within the data, providing deeper 
insights into the markets. This has significant implications 
for risk management and the development of trading strat-
egies, as it allows for a more accurate assessment of mar-
ket behavior under different conditions [8].
Furthermore, it is necessary to understand where does 
multifractality originate. The following two sources are 
the main causes of multifractality: distinct persistent cor-
relations of small and large fluctuations over time, along 
with a broad probability density function [1, 2]. Long-
range correlations involve persistent patterns or trends 
over different time scales, which are commonly seen in 
financial markets, this leads to volatility clustering and 
complex scaling behaviors [9]. Meanwhile, fat-tailed dis-
tributions reflect the presence of extreme events that occur 
more frequently than what a normal distribution would 
predict. These heavy tails contribute significantly to 
multifractality, even when the time series is randomized, 
which removes correlations but retains the distribution. 
The persistence or even increase in multifractality after 
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shuffling highlights that fat-tailed distributions are a key 
driver of this phenomenon. Studies have shown that in 
financial data, such as stock returns, the broad distribution 
plays a more dominant role in causing multifractality than 
time-dependent correlations [10]. In this article, MFDFA 
is applied to analyze the index returns of Netflix and the 
sources of multifractality.

2. Methodology
2.1 Data Source
The dataset used in this article comes from Yahoo Fi-
nance. This data contains daily stock trading information 
of Netflix with currency in USD and it ranges from 20 
August 2019 to 20 August 2024, which is around 5 years.

2.2 Method Introduction
According to Kantelhardt et al., there are five steps in 
MFDFA. Suppose xk , where k N= …1, , , is a time series, 
and N  is the length of the series [1].
Step 1: Find the profile:

 y i x x i N( ) ≡ − = …∑
k

i

=1

 
 
 k

−

, 1, ,  (1)

where x
−

 denotes the mean of the time series.

Step 2: The profile y i( )  is then partitioned into 

N ints ≡
 
 
 

N
s

 non-overlapping segments of equal length 

s . Normally, the length of the time series is not a multiple 
of the chosen time scale s, a small part at the end of the 
profile can still be considered by repeating the same pro-
cedure from the other side. Thus, there are 2Ns  segments 
in total.
Step 3: Find the local trend for each of the 2Ns  segments 
using least square fit. Then, the variance is given by:

 F v s y v s i y i2 2( , { 1 ( )}) ≡ − + −
1
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for v v N, 1, ,= … s  and,
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for v N N= + …s s1, ,2 , where y iv ( )  denotes the fitting 
polynomial in segment v .
Step 4: Taking average over all segments, the q th order 
fluctuation function is:

 F s F s vq ( ) =  
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The index variable q  can be any non-zero real number.
Step 5: The scaling behavior of the fluctuation functions 
are determined by analyzing log – log plots F sq ( )  versus 

s  for each value of q . If the time series xk  are long-range 

power-law correlated, F sq ( )  increases, for large values of 
s , as a power-law:
 F s sq ( ) h q( )  (5)

For large time scales, F sq ( )  is statistically unreliable 

since there are only a few segments. When q = 2 , h(2)  

is same as the Hurst exponent, so the function h q( )  is 
defined to be the generalized Hurst exponent. The value 
h(0) , which is identical to the limit of h q( )  as q → 0 , 
cannot be calculated directly from equation (4) due to the 
exponential singularity. Hence, the following method can 
be applied:

 F s exp ln F v s s0 ( ) ≡  
 
 4

1
Ns
∑
2
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N
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In case of monofractal time series, h q( )  does not depend 
on q  as the time series is fully described by a single ex-
ponent.
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3. Results
3.1 Multifractal Analysis
MFDFA is applied to the logarithmic index returns of Net-

flix. The returns are calculated as:
 r ln P ln Pt t t= −( ) ( −1 ) ,  (7)

where pt  is the closing index at time t .

Fig. 1 The index returns of Netflix
Figure 1 shows the logarithmic index returns of Netflix; it is obvious that fluctuations persist 

across the entire series.

Fig. 2 Log-log plot of F sq ( )  versus s
Figure 2 presents a log-log plot of the fluctuation func-
tions F sq ( )  against the time scale s  for three different 

values of q . The distinct slopes for different q  values 
indicate the multifractal characteristics of the series. It 
is also clear from the plot that as q  varies, the scaling 
behavior changes, which is a clear sign of multifractality. 
For q =10 , the curve is relatively flat, indicating that larg-

er fluctuations dominate at this moment order. Converse-
ly, for q = −10 , the steeper slope suggests that smaller 

fluctuations are more relevant at this moment order. The 
middle curve at q = 0  represents the behavior around the 

median fluctuations. The divergence of these curves with 
increasing s demonstrates that the scaling properties differ 
across different magnitudes of fluctuations, underscoring 
the multifractal nature of the Netflix returns.
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Fig. 3 Hurst exponent of Netflix returns
In Figure 3, the Hurst exponent hq  is plotted against the 

moment q . the Hurst exponent hq decreases as q  increas-

es, indicating the presence of multifractality. This trend 
suggests that fluctuations of different magnitudes exhibit 
distinct scaling behaviors. Specifically, for large negative 
q , hq   primarily captures the small fluctuations in the time 

series, while large positive q  captures larger fluctuations. 
The decreasing nature of hq   as q  increases suggests that 

large fluctuations are less persistent compared to small 
ones. This behavior is typical in financial data, where 
small fluctuations tend to be more frequent, while large 
fluctuations are rarer and exhibit different dynamics.

Fig. 4 Mass exponent τ q  versus q
As shown in Figure 4, the nonlinear curve in this plot 
indicates that the scaling behavior is not uniform across 
different q  values. In a monofractal process, τ q   would 

exhibit a linear relationship with q . However, the convex 
shape of this curve suggests that the Netflix return data 
exhibits multifractality. The slope of τ q   is steeper for neg-

ative q  values, which again emphasizes the significance 
of smaller fluctuations. For positive q , the curve flattens, 
reflecting that large fluctuations contribute less to the 
overall scaling behavior. This asymmetry in the curve is 
a hallmark of financial time series, where small and large 
price changes follow different scaling laws due to varying 
market dynamics.
Figure 5 shows the multifractal spectrum, where α and 

f (α )  denote the singularity strength and the fractal di-
mension respectively. The bell-shaped curve observed in 
the plot is characteristic of a multifractal spectrum. The 
shape of the curve tells the strength of the multifractality, 
it means a broader multifractal spectrum indicates a great-
er level of multifractality. In this case, the curve is rela-
tively wide, suggesting that the Netflix return series exhib-
its strong multifractality. The leftward tail of the spectrum, 
corresponding to lower α values, which indicates the pres-
ence of singularities associated with small fluctuations. 
On the right side, the spectrum extends to higher α values, 
indicating singularities related to larger fluctuations. The 
asymmetry of the curve, which leans more toward higher α, 
suggests that larger fluctuations are more diverse and play 
a significant role in the series’ behavior.
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Fig. 5 Multifractal spectrum of Netflix
3.2 Sources of Multifractality
Understanding the nature of multifractality is crucial. 
Typically, the two main sources of multifractality in time 
series are fluctuations in long-range temporal correla-
tions and heavy tail probability distributions. Through 
the analysis of shuffled and surrogate time series, these 
sources can be identified. Since shuffling the series elim-
inates long-term correlations, so that fat-tailed distribu-
tions become the only source, while the surrogate data 
preserves correlations but normalizes the distribution. If 
long-range correlations are the sole cause, the shuffled 

data will approximate a constant value near 0.5  for all q
, and the multifractal spectrum typically becomes narrow-
er. However, when the multifractality is driven solely by 
distribution’s heavy tails, the surrogate data will show a 
significant reduction in the multifractality, meaning that 
heavy-tailed distribution was the dominant cause. The 
multifractality of the shuffled series will reduce, if the 
multifractality comes from both sources. The degree of 
multifractality can be characterized by:
 ?α α α= −max min  (8)

Table 1. Multifractal degrees of Netflix’s return

αmax αmin ?α

Original series 0.7962 0.2450 0.5512
Shuffled series 0.8224 -0.0853 0.9077

Surrogate series 0.7103 0.2662 0.4441

It is apparent from Table 1 that shuffling the series made 
the multifractality stronger. In financial time series, an in-
crease in multifractality is often observed after shuffling, 
which occurs when all temporal correlations are eliminat-
ed but the distribution is maintained. This suggests that 
the broad distribution plays a significant role in driving 

the multifractality, even more than time correlations [9]. 
Additionally, there is a reduction in the multifractality of 
the surrogate data, this confirms that heavy-tailed distri-
bution was the main source. The dominance of fat-tailed 
distributions can also be seen by analyzing the statistical 
data of the time series.

Table 2. Statistical analysis of the Netflix returns series
Mean Median Maximum Minimum SD Skewness Kurtosis Observations
0.0007 0.0008 0.1558 -0.4326 0.02957 -2.6511 44.7412 1258

Table 2 gives an overview of the statistical features of the 
Netflix returns. There is a skewness of -2.6511 and a kur-
tosis of 44.7412, this indicates heavy tails and a peaked 
distribution. Therefore, the data contains many outliers 
compared to a normal distribution, confirming the domi-
nance of heavy-tailed distribution.

4. Conclusion
The analysis of multifractality in financial markets is es-
sential for understanding the complex and diverse scaling 
behaviors that influence market dynamics. This article 
studied the index returns of Netflix from 2019 to 2024 by 
using MFDFA to discover the multifractality of the data 
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and its underlying sources. The findings indicate that the 
Netflix time series exhibits significant multifractality, 
primarily driven by fat-tailed distributions rather than per-
sistent temporal correlations.
In financial time series such as Netflix’s returns, multi-
fractality can originate from two primary sources: per-
sistent temporal correlations and the underlying statistical 
distribution of the data. It has traditionally been assumed 
that temporal correlations are the primary factor driving 
multifractality in time series analysis, as they significantly 
influence the scaling properties and complexity of the data 
across different time scales. However, the results of this 
study challenge that assumption by highlighting the signif-
icant role of fat-tailed distributions. The analysis showed 
that even after shuffling the time series, destroying any 
time correlations, the multifractality either persists or in-
tensifies. This suggests that the broad, fat-tailed nature of 
Netflix’s returns is a more substantial contributor to multi-
fractality than previously thought.
This finding has important implications for financial mod-
eling and risk management. Traditional financial models 
often rely on assumptions of normally distributed returns 
or simple random walk behavior, which fail to capture 
the true complexity of market dynamics. By learning the 
impact of fat-tailed distributions, models can be adjusted 
to better predict market behavior, especially in extreme 
scenarios. For Netflix’s index returns, recognizing the role 
of fat tails in multifractality can lead to more accurate 
assessments of market risks and the development of more 
effective trading strategies. Furthermore, the study high-
lights that the multifractal spectrum of Netflix’s returns 
broadens after shuffling, indicating stronger multifractali-
ty, and the wider spectrum reflects greater heterogeneity in 
scaling behaviors. This observation underscores the need 
for financial models that can accommodate the inherent 
complexities of real-world data, moving beyond simplistic 
assumptions.
In conclusion, the analysis of Netflix’s index returns 
shows strong multifractality and provides evidence that 
heavy tail distributions are a key driver of multifractality 
in financial data. The persistence and increment of multi-
fractality after shuffling confirm that distributional charac-
teristics play a critical role, even more than the influence 
of temporal correlations. These findings offer valuable in-

sights into market behavior and emphasize the importance 
of considering fat-tailed distributions in financial analysis. 
As markets continue to evolve, embracing models that 
account for both temporal correlations and distributional 
properties will be crucial in navigating the complexities of 
financial systems.
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