
Dean&Francis

A Research on Single-Vehicle Trajectory Planning Algorithm in Multi-
Obstacle Environments

Jiaxi Zhong

University of Electronic Science and Technology of China,Chengdu,610000,China;
18113956769@163.com

Abstract:
This work aims to investigate the optimal trajectory planning for single-vehicle scenarios in obstacle-filled 
environments. The first section of the paper provides background information and an overview of autonomous driving 
trajectory planning, emphasizing its crucial role in ensuring safety and efficiency. A review of previous literature shows a 
range of approaches and constraints for trajectory optimization, especially in complicated and dynamic situations. Then, 
the single-vehicle trajectory planning optimum control problem (OCP) is stated and, in order to solve it practically, it 
is transformed into a nonlinear programming (NLP) issue. A classification of numerical solution methods is presented, 
including direct and indirect approaches. Extensive trials conducted with different initial and terminal circumstances and 
with single and multiple obstacles have demonstrated that the model can reliably produce the desired outcomes. As a 
result, the study demonstrates the robustness and efficiency of the proposed algorithm.
Keywords: Trajectory Planning; Single-Vehicle; Optimal Control Problem; Full Discretization; Nonlinear 
Programming (NLP).

1. Introduction
Since China’s Ministry of Industry and Information 
Technology declared its support for the commercial im-
plementation of L3 autonomous driving features in 2023, 
autonomous driving technology has emerged as a major 
trend in transportation and has the potential to significant-
ly change how we commute and transport goods. Auton-
omous driving has three primary sections, including per-
ception, planning, and control. The planning phase is one 
of the most important of these stages because it creates 
the link between perception and control by ensuring the 
vehicle is on a safe, practical and effective route. Trajecto-
ry planning can be further categorized into single-vehicle 
and multi-vehicle planning. This paper focuses on sin-
gle-vehicle trajectory planning, aiming to contribute to the 
advancement of this fundamental aspect of autonomous 
driving technology.

1.1 Development of Trajectory Planning for 
Autonomous Vehicles
Researchers have conducted various studies in the tra-
jectory planning field. For example, Li et al. adopted 
vehicle-to-infrastructure (V2I) communication and traffic 
signal optimization technology to improve safety and 
efficiency at junctions and merging roadways[1]. Yesil-

yurt, Tunc, and Soylemez solved the problem of traffic 
congestion and energy consumption at junctions. They 
shared arrival times and optimized reservations using a 
multi-agent system with Vehicle Agents (VAs) and an In-
tersection Agent (IA). This method reduces waiting time 
and energy consumption while preventing collisions[2]. 
Bashir and Fleming employed a platoon-based strategy to 
solve the problem of coordinating autonomous vehicles 
through intersections. This approach allows only one pla-
toon to be in the conflict zone at a time to ensure safety. 
Compared with the traditional stop sign control method, 
this approach reduces average delay per vehicle and com-
munication overhead[3].
Hausknecht, Au, and Stone also contributed to optimiz-
ing traffic flow through several junctions. Their method 
employs Autonomous Intersection Management (AIM) 
with a multi-agent system, showing a significantly higher 
efficiency than conventional traffic controls[4]. Li and col-
leagues focused on optimizing trajectories for Connected 
and Automated Vehicles (CAVs) at unsignalized junctions. 
They used a decentralized initial guess framework and a 
centralized optimum control problem (OCP) method with 
numerical solutions. As a result, they can optimize CAV 
cooperation and manage junction traffic more effective-
ly[5].
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To prevent accidents in lane-free and multi-agent auton-
omous driving scenarios, Dimitrios Troullinos and col-
leagues used coordination graphs (CGs) and the max-plus 
method with artificial potential fields. Their approaches 
enable cars to reach appropriate speeds and further im-
prove traffic flow[6]. Li et al. addressed the issue of 
fault-tolerant motion planning for CAVs at signal-free and 
lane-free junctions in their study. They proposed solving 
three parallel optimization problems to ensure vehicle 
safety under fault situations[7].
Through the study of Müller, Carlson, and Kraus, the 
problem of vehicle delay at intersections was solved. 
Their method schedules vehicle arrivals by using a Mixed 
Integer Linear Programming (MILP) technology, allowing 
them to efficiently manage traffic by optimizing arrival 
times and ensuring collision-free passage[8]. H. Wei, L. 
Mashayekhy, and J. Papineau adopted a game-in-game 
framework that integrated Vehicle-to-Vehicle (V2V) and 
V2I technologies, which was used to tackle the coordi-
nation of linked cars at signal-free intersections. Their 
approach not only improved junction throughput, but re-
duced accidents by 99%[9].
The last research was conducted by Bai Li, Youmin 
Zhang, and their colleagues, who discussed the vehicle 
coordination issue at unsignalized crossings. They used 
a batch-processing framework that combines reserva-
tion-based and planning-based techniques, thus greatly 
improving junction performance and safety.[10].
The above research demonstrates various innovative 
methods in autonomous driving trajectory planning. Based 
on these studies, we have developed a new approach to 
further improve the efficiency and safety of trajectory 
planning for autonomous vehicles.

1.2 Introduction Overview
Our study includes single-vehicle trajectory planning 
based on Optimal Control Problem (OCP), while incorpo-
rating real-time obstacle avoidance. The proposed algo-
rithm constantly optimizes the motion of the vehicle and 
dynamically modifies the route to avoid obstacles. As a 
result, our works provide a safety foundation for the oper-
ation of autonomous driving in complex environments.

2. Optimal Control Problem for Sin-
gle-Vehicle Trajectory Planning
The single-vehicle trajectory planning problem can be 
modeled as an optimal control problem (OCP). The fol-
lowing subsections(2.1-2.4) detailed the vehicle’s kine-
matic constraints, boundary conditions, collision avoid-
ance constraints and objective function respectively. The 
overall formulation of the OCP will be described in 2.5.

2.1 Vehicle Kinematic Constraints
The five equations of the vehicle’s kinematic constraints 
are as follows:
dx t

dt
( )

= v t cos t( ) • θ ( )

dy t
dt
( )

= v t sin t( ) • θ ( )

dv t
dt
( )

= a t( )

d tφ
dt
( )

= ω (t )

d t v t tan tθ φ
dt L
( )

=
( ) • ( )

Table 1. Parameters of vehicle kinematic constraints.
Sign of parameter(s) The parameter(s) name

x y, The vehicle’s position in the 2D plane

θ Orientation angle
v Velocity

φ Steering angle of the front wheels,

a Acceleration
L Wheelbase of the vehicle

These kinematic constraints are the basis of vehicle mo-
tion, and they are the basic conditions for trajectory plan-
ning problems.
Moreover, there are some physical limitations during the 
trajectory optimization process, which ensure that the 
solution is feasible and safe. The following dynamic con-

straints are imposed:
Velocity bounds: v v vmin max≤ ≤ , where vmin = 0  m/s, 

vmax = 6  m/s.

Acceleration bounds: a a amin max≤ ≤ , where amin = −2  
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m s/ 2 , amax = 2  m s/ 2 .

Steering angle bounds: φ φ φmin max≤ ≤ , where φmin = −
π
4

, 

φmax =  π
4

.

Angular  ve loc i ty  bounds :  w w wmin max≤ ≤ ,  where 

wmin = −0.5  rad/s, wmax = 0.5  rad/s.

2.2 Boundary Conditions
Boundary conditions are set at both ends of the trajectory, 
as Table 2 shows.

Table 2. Parameters of boundary conditions.
Coordinates Velocity Orientation angle Steering angle

Initial condition (x0 , y0 ) = (0, 0) v0 = 3 θ0 = 0 φ0 = 0

Final condition ( x f , y f ) = (15, 5) v f = 3 θ f = 0 φ f = 0

It should be noted that once the car stops, the steering an-
gle must be 0 to prevent damage to the vehicle.
These boundary conditions determine the beginning and 
ending points of the vehicle’s trajectory, guiding the ve-
hicle to find feasible paths that satisfy these constraints 
throughout the optimization process.

2.3 Collision Avoidance Constraints
Avoiding collisions with outside obstacles is a crucial part 
of trajectory planning. In this study, obstacles are repre-
sented by their circumscribed circles, regardless of their 
original shapes (e.g., circles, squares, or triangles). The 
vehicle is guaranteed to maintain a safe distance from the 
obstacle’s edge by the collision avoidance restriction.
For an obstacle with center coordinates ( , )x yobs obs  and 

radius robs , assuming that the vehicle is approximated by a 

circle with radius rvehicle , the collision avoidance constraint 

is expressed as:

( ) ( )x x y y r r− + − ≥ +obs obs obs vehicle
2 2

, ensuring that the vehicle never crosses over into the ob-
stacles. It is possible to include multiple obstacles in the 
model, each with a unique constraint.

2.4 Objective Function
For trajectory planning problems, the purpose of an objec-
tive function is to minimize the total energy consumption 
of vehicle control and ensure the smoothness of the trajec-
tory. In our research, the objective function is defined in 
the following integral form:

F a t t dt= +∫tf
0 ( ( )2 2ω( ) )

Table 3. Parameters about the objective function.
Sign of parameter The parameter name

F Objective function
tf Total planning time

a(t) Vehicle’s acceleration at time t
w(t) Vehicle’s angular velocity at time t.

The above equation shows that the objective function is 
equal to the sum of squared acceleration and angular ve-
locity. By setting the objective function, the optimization 
process can produce an economical and smooth trajectory. 
Therefore, the vehicle will follow an optimal path while 
meeting dynamic restrictions and avoiding collisions.

2.5 Overall Formulation of the Optimal Con-
trol Problem
To conclude the discussion from 2.1-2.4, the entire OCP 
problem is described as follows, including the objective 
function and all constraints: 

Objective function: F a t t dt= +∫tf
0 ( ( )2 2ω( ) )

Constraints: 1. 
dx t

dt
( )

= v t cos t( ) • θ ( )

1. 
dy t

dt
( )

= v t sin t( ) • θ ( )

2. 
dv t

dt
( )

= a t( )

3. 
d tφ

dt
( )

= ω (t )
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4. 
d t v t tan tθ φ

dt L
( )

=
( ) • ( )

5. v v vmin max≤ ≤ , where vmin = 0  m/s, vmax = 6  m/s.

6. a a amin max≤ ≤ , where amin = −2  m s/ 2 , amax = 2  m s/ 2

.

7. φ φ φmin max≤ ≤ , where φmin = −
π
4

, φmax =  π
4

.

8. w w wmin max≤ ≤ , where wmin = −0.5  rad/s, wmax = 0.5  

rad/s.

9. ( ) ( )x x y y r r− + − ≥ +obs obs obs vehicle
2 2

By incorporating the vehicle kinematic model, boundary 
conditions, collision avoidance requirements and objective 
function, we can finally find an efficient and safe trajecto-

ry through the iteration method. However, the OCP needs 
to be solved through the numerical Solution method.

3. Numerical Solution Method for Sin-
gle-Vehicle Planning Based on Optimal 
Control Problem
According to section 2, the trajectory planning problem 
is formulated as an Optimal Control Problem (OCP). 
However, the OCP requires numerical techniques to solve. 
From this section, the basic method and its specific imple-
mentation will be introduced. After that, the OCP is trans-
formed into a Nonlinear Programming (NLP) problem.

3.1 Classification of Numerical Solution 
Methods
Two numerical solution methods for solving Optimal 
Control Problems (OCPs):

Table 4.Two numerical solution methods for solving OCPs.
Method name Feature Key step Advantages & reasons

Partial Discretization 
(Indirect Methods)

Only control variables are 
discretized, while state 
variables are computed 

through integration of the 
system dynamics.

Use variational calculus or 
the Pontryagin    Maximum 
Principle (PMP) to construct 
the optimality requirements 

of the OCP.

This approach is slower than 
full discretization method, 

because it requires repeated 
integration for the state 

equations in each iteration.

Full Discretization (Direct 
Methods)

The state and control 
variables are fully 

discretized across the whole-
time range.

The continuous-time OCP 
is directly transformed into 
a Nonlinear. Programming 

(NLP) problem by 
discretizing the differential 

equations of the system 
dynamics, the control 
variables, and the state 

variables. It is then solved 
using standard NLP solvers.

The simultaneous 
optimization simplifies the 

handling of constraints, 
making it suitable for 

complex problems. As a 
result, direct methods are 
frequently chosen in real-

world applications due 
to their flexibility and 

robustness.

3.2 Choice of Full Discretization Method
Because of its robustness and flexibility in handling con-
straints, the full discretization method is employed in our 
research. The specific reasons for this choice are as fol-
lows:
1. The full discretization method allows for the existence 
of complex constraints, such as collision avoidance. How-
ever, these constraints are critical in our experiment, espe-
cially in the multi-obstacle environment.
2. Through this method, the whole issue is discretized. 
Therefore, the possibility of numerical instability can be 
eliminated while addressing boundary value problems.
3. The Full discretization method transforms the OCP into 

an NLP. After that, we use a well-established NLP solver 
to effectively deal with these optimization problems.

3.3 Solution of the NLP Problem
For this problem, we discretized all state and control vari-
ables using 200 points to represent the trajectory in terms 
of the variables x y v a, , , , , ,θ φ and ω . The resulting NLP 
problem is formulated as follows:(N=200)

Objective function: F a t= +∑
N

i=

−

0

1

( ) • ?i i
2 2ω

Constraints: 1. x x t v cosi i i i+1 = + ? • • θ

1. y y t v sini i i i+1 = + ? • • θ
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2. v v t ai i i+1 = + ? •

3. φ φ ωi i i+1 = + ? •t

4. θ θi i+1 = + ? •t v tani i•
L

φ

5. v v vmin max≤ ≤ , for i N= 0,1,...,

6. a a amin max≤ ≤ , for i N= 0,1,...,

7. φ φ φmin max≤ ≤ , for i N= 0,1,...,

8. w w wmin max≤ ≤ , for i N= 0,1,...,

9. ( ) ( )x x y y r r− + − ≥ +obs obs obs vehicle
2 2 , for i N= 0,1,...,

Summary
The subsections(3.1-3.3) outline how the single-vehicle 

trajectory planning problem is transformed into an NLP 
problem through the discretization process. By applying 
the full discretization method and NLP solver, we effec-
tively manage complex constraints and can compute the 
optimal collision-free trajectory in the multi-obstacle en-
vironment.

4. Experiments
The following experiments are based on the CasADi 
framework. This section shows the experimental setup 
and results of our trajectory planning issue in both single 
and multiple obstacle situations.

4.1 Single Obstacle Scenario
Parameters:

Table 5. Parameters.
Sign The parameter name Value

rvehicle
The radius of the car (approximately a 

circle) 0.5 m

robs Radius of the circular obstacle 1 m

( , )x yobs obs
Coordinate of the circular obstacle 

center (4,5)

( , )x y0 0 Initial Position (0,0)

v0 Initial Speed 3 m/s

θ0 Initial Orientation angle 0

( , )x yNfe Nfe− −1 1 Terminal Position (15,5)

vNfe−1 Terminal Speed 3 m/s

θNfe−1 Terminal Orientation angle 0

tf Time Horizon 30 s
CasADi Version 3.6.6
Python Version Python 3.11.4

Computer model Legion Y9000p2021H

CPU 11th Gen Intel(R) Core(TM) i7-
11800H @ 2.30GHz 2.30 GHz

Key steps:

1. After determining the parameters, the initial trajectory 
is generated using linear interpolation between the start 
and end points, which is independent of the obstacle’s po-
sition. This leads to a straight-line initial trajectory.
2. The CasADi solver was then used to optimize this ini-
tial trajectory. It will dynamically adjust the path to avoid 
the obstacle while meeting all the constraints.

Results and discussion

In the single-obstacle scenario, the initial trajectory (shown 
as a dashed blue line) was a linear interpolation from the 
initial position to the terminal position, regardless of the 
position of the obstacle. The optimization algorithm suc-
cessfully generates a collision-free trajectory(shown as a 
solid line), enabling the vehicle to effectively avoid the 
obstacle (represented by the circular area in Figure 1).
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Figure 1. The results in a single-obstacle situation.

Figure 2. Total time consumed in the single-obstacle situation.
This result verifies the algorithm’s ability to avoid obsta-
cles in a simple environment. It works by dynamically 
adjusting the vehicle’s trajectory to prevent collisions. The 
result indicates that this optimization method is effective 

in solving basic obstacle avoidance problems. Meanwhile, 
the total time is 2.047 seconds, showing that our model 
has high efficiency.

4.2 Multiple Obstacle Scenario
Table 6. Parameters.

Sign The parameter name Value

rvehicle
The radius of the car (approximately a 

circle) 0.5 m

robs1 The radius of the circular obstacle 1 m

( , )x yobs obs1 1
Coordinate of the circular obstacle 

center (4,5)

robs2
The radius of the circumscribed of the 

square obstacle 1 m

( , )x yobs obs2 2
The coordinate of the circumscribed 
circle center of the square obstacle (8, 2)

robs3
The radius of the circumscribed of the 

triangular obstacle 1 m

( , )x yobs obs3 3
The coordinate of the circumscribed 
circle centerof the triangular obstacle (12, 4)

( , )x y0 0 Initial Position (0,0)

v0 Initial Speed 3 m/s

θ0 Initial Orientation angle 0

( , )x yNfe Nfe− −1 1 Terminal Position (15,5)

vNfe−1 Terminal Speed 3 m/s

θNfe−1 Terminal Orientation angle π
6

tf Time Horizon 30 s
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Key steps:
1. For multiple obstacle scenarios, a more complex initial 
guess was used. We manually selected 20 points to create 
an initial path to avoid all obstacles. These points were 
then interpolated to provide a smoother initial trajectory 
that served as the input to the optimization procedure.
2. After using the CasADi solver, the initial trajectory was 
improved to a smooth curve, ensuring that the vehicle was 
able to optimally reach the terminal position while avoid-
ing all obstacles.
Results and discussion
In the multi-obstacle scenario depicted in Figure [2], the 
optimized trajectory successfully goes through three dif-

ferent obstacles: a circular obstacle (Obstacle 1), a square 
obstacle (Obstacle 2), and a triangular obstacle (Obstacle 
3). Each obstacle is represented by its respective shape, 
while its circumscribed circle is used to simplify the colli-
sion detection.
The initial trajectory (shown as a dashed orange line) was 
a linear interpolation that roughly avoided the obstacles 
but did not provide the optimal path. After optimization, 
the final trajectory (shown as a solid blue line) achieves 
a smooth trajectory that meets all constraints. It avoids 
possible collisions with obstacles while maintaining the 
shortest route distance.

Figure 3. The result in a multi-obstacle situation.

Figure 4. Total time consumed in multi-obstacle situation.
The result demonstrates the algorithm’s capability to ef-
fectively handle complex environments with multiple ob-
stacle shapes. The optimized path shows smooth curvature 
tuning around each obstacle. This shows the robustness 
of this optimization method in multi-obstacle situation. 
Moreover, the total time is 22.619 seconds, indicating that 
our algorithm has high efficiency and performance.

4.3 Situations with different parameter values
We then change the initial orientation angle while keeping 
other conditions constant. The results are shown below.
Case 1:

θ0 =
π
6

Figure 5. The results with an orientation angle is 30°.
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Case 2:

θ0 =
π
3

Figure 6. The results with an orientation angle is 60°.
We also alter the initial position and the terminal position 

of the trajectory.( θ0 = 0 , θNfe−1 =
π
6

 ). The results are 

shown in Figures 7, 8.

Case 1:
( , ) (1,3)x y0 0 =

( , ) (15,4)x yNfe Nfe− −1 1 =

Figure 7. The new results with new start and end positions.
Case 2:
( , ) (0,5)x y0 0 =

( , ) (15,3)x yNfe Nfe− −1 1 =

Figure 8. The results in a multi-obstacle situation with new start and end positions.
The results above illustrate that our algorithm can effec- tively achieve the desired objectives under various param-
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eter values.
In summary, the experimental setup, parameters, re-
sults,and discussions of the trajectory planning problem in 
different obstacle situations are described in 4.1 and 4.2. 
In addition, 4.3 shows the trajectory results across differ-
ent parameter values. Therefore, our method is not only 
effective for both single and multiple obstacle scenarios, 
but robust and adaptable in different constraints.

5. Conclusion
In this work, we first convert the trajectory planning prob-
lem into an OCP, then transform it into an NLP through 
the discretization method. With varying initial and termi-
nal conditions, the proposed approach successfully ac-
complished the objective well in both single and multiple 
obstacle scenarios. Our model has a good performance 
since the results are not dependent on the initial guess and 
don’t take a long time to compute.
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