
Dean&Francis

Design and Implementation of Digital Integrated Circuit Based CPU

Ruikai Zhang

University of Electronic Science and Technology of China, Glasgow College, Hainan, China
Corresponding author: 2839689Z@student.gla.ac.uk

Abstract:
This paper presents a simplified 16-bit CPU design and its implementation using digital integrated circuits developed
with Verilog hardware description language, while emphasizing simulation through the EDA tool. This design puts
more emphasis on the critical roles played by the data path and the control unit, executing key instructions including
arithmetic operations such as addition, subtraction, bitwise logic, and conditional jumps. This structurally modular CPU
is both functioning and stable in nature, allowing support for future enhancements and enhancements as well, thereby
serving as an effective model towards an understanding of the principles of CPU design. The execution of these basic
instructions puts the core of the CPU under test and reaffirms its proper operation in respect of the detailed instruction
set, while its extensibility design confirms further improvement possibilities for future complex instructions as well as
finite-state machine optimization for the control unit. The present work not only proves the possibility of creating a fully
working CPU, using readily available bare minimum resources to implement a prototype, but is also a breakthrough
in future research with CPU architecture. The obtained results will shed light on CPU functionality optimization and
extension, being the ground for building more powerful and effective processors in the future.
Keywords: 16-bit CPU Design, Digital Integrated Circuits, Verilog Hardware Description Language, CPU
Simulation and Verification

1. Introduction
With the rapid development of information technology,
the design and optimization of the central processing unit
(CPU), as the core component of a computer system,
occupies an important position in the field of electronic
information engineering.The performance of the CPU
directly determines the overall processing capability of
the computer system. Therefore, the study and design of
efficient CPU architectures are of great significance to
enhance the performance of computing devices. In partic-
ular, the demand for high-performance CPUs is becoming
more and more urgent, driven by emerging technologies
such as big data, artificial intelligence and the Internet of
Things. Understanding and mastering the working princi-
ple and design methodology of CPUs, and designing them
based on digital integrated circuit platforms has become
an important task for electronic and information engineer-
ing students and related researchers [1].
Traditional CPU design usually involves complex archi-
tectures and advanced processes, which may be difficult
for beginners and engineering education. By designing
and implementing a simplified CPU model, however,
students can intuitively understand the internal working
mechanism of the CPU and master the whole process from

instruction decoding to execution to result storage. Espe-
cially through the application of digital integrated circuit
technology, it enables designers to deeply understand the
various modules of the CPU at the hardware level, such as
data paths and control units [2]. This enables students and
researchers not only to consolidate the basic knowledge of
digital circuits, but also to lay a solid foundation for more
complex CPU design and research in the future.
This paper details the design and implementation of a 16-
bit simplified CPU based on digital integrated circuits. By
using Verilog Hardware Description Language (VHDL)
and EDA tools (Vivado) [3], the various modules of the
CPU have been designed, simulated and verified to ensure
that it is able to correctly execute a series of basic arith-
metic and logical instructions [4]. The main objective of
this experiment is to verify the functionality and scalabil-
ity of the CPU by designing and implementing its various
functional modules such as data path and control unit.
The paper is organized as follows: Chapter 1 provides an
introduction, outlining the research background, signifi-
cance, and the main focus of the paper. Chapter 2 delves
into the CPU design methodology, detailing the working
principles of each module, with a particular emphasis on
the design of the data path and control unit, along with the
results obtained from the implementation. Chapter 3 pres-

ISSN 2959-6157�

1

Dean&Francis

ents and analyzes the results of the CPU design. Finally,
Chapter 4 concludes the paper, summarizing the successes
and challenges encountered during the experiments and
suggesting future research directions.

2. Methodology
2.1 Overall CPU Architecture Overview
In this experiment, we designed and implemented a sim-
plified 16-bit CPU model. The overall architecture of this

CPU can be divided into two main parts: the data path and
the control unit [2,5], as shown in Fig. 1. The data path
is responsible for performing all arithmetic and logical
operations, and reading instructions and performing write
operations. The control unit is responsible for parsing the
instructions and generating the corresponding control sig-
nals, and coordinating the operation between the modules
[6]. The two work closely together through signaling lines
to enable the CPU to execute the intended instruction set
correctly.

Fig.1 CPU architecture diagram
2.2 Datapath design
The datapath is the core computing part of the CPU [7],
which handles the transfer of data, arithmetic operations,

logical operations, and execution of instructions. The key
modules in the datapath include the Register Group, the
Arithmetic Logic Unit (ALU), the Program Counter (PC),
and the Multiplexer (MUX), as shown in Figure 2.

Fig. 2 Datapath schematic diagram

2

Dean&Francis

- Register Group:
The register group is the core module for storing and read-
ing operands in the CPU. We designed four registers (R0,
R1, R2, R3) for temporary storage of operands and inter-
mediate operation results. The registers control the read-
ing and writing of data through address selection signals
(Rd, Rs) and enable signals (reg_en). In short, the register
group selects the source operands through Rs in the read
stage, and writes the operation results of the ALU to the
specified registers in the write stage according to the reg_
en signal from the control unit.
- ALU:
The ALU is the arithmetic core of the datapath and is
responsible for performing all arithmetic and logical op-
erations in the CPU instructions. The ALU is designed to
support a variety of operation modes including addition,
subtraction, bit-wise and, bit-wise or, etc [8]. Depending
on the Opcode, the ALU reads operands from a register
bank or uses an immediate number (imme) from an in-
struction as an input. The function selection of the ALU
is determined by a control signal (alu_func), and different
opcodes correspond to different modes of operation. For
example, when the opcode instructs to perform addition,
the ALU adds the two input operands and passes the result
to a register bank or program counter.
- Program Counter:
The program counter is used to keep track of the address
of the instruction currently being executed by the CPU.
After each instruction execution, PC is incremented to
point to the address of the next instruction. However,
when a jump instruction is executed, the value of PC is
updated according to the jump address. The update opera-
tion of PC is controlled by the pc_ctrl signal of the control
unit, which supports the functions of maintaining the cur-
rent address, incrementing the address, and jumping to a
new address.
- Multiplexer:
The multiplexer in the datapath is used to select the input
data source for the ALU. The MUX selects the immediate
number from the instruction register as input when an im-
mediate number operation needs to be performed, and the
MUX selects the output of a register bank as input when
a register operation is to be performed. The selection op-

eration of the MUX, which is determined by the alu_in_
sel signal of the control unit, ensures that the datapath can
correctly handle different types of operation instructions.

2.3 Control unit design
The control unit is the command center of the CPU, which
is responsible for parsing instructions and generating
control signals to guide the modules in the data path to
perform operations in sequence. The design of the control
unit is based on a finite state machine (FSM), which in-
cludes functional modules such as instruction decoding,
state transfer and control signal generation.
- Instruction Register:
The instruction register is used to store the instruction cur-
rently being executed. At the beginning of each instruction
cycle, the CPU reads the instruction from the memory and
loads it into the IR. the output of the IR is passed to the
control unit for decoding and generating the appropriate
control signals.
- Instruction Decoder:
The control unit first decodes the instruction in the cur-
rent instruction register (IR). The instruction consists of
an opcode (Opcode), a destination register (Rd), a source
register (Rs) and an immediate number (imme). The in-
struction decoder maps the opcode to specific control sig-
nals that are used to activate the corresponding operation
in the data path. For example, when the opcode instructs
to perform an addition operation, the decoder generates
the corresponding alu_func signal that instructs the ALU
to perform the addition operation.
- Finite State Machine:
The state machine of the control unit is responsible for
managing the operation flow of the CPU. The FSM [8]
consists of multiple states, initial, finger fetch, decode, ex-
ecute, and write back, etc.[3,9], as shown in Fig. 3. Each
state represents a different stage of the CPU in executing
an instruction. The FSM decides the next state based on
the current state and input signals (e.g., opcodes, condi-
tional flags, etc.) and generates the corresponding control
signals [10]. For example, when the CPU is in the finger
fetch state, the FSM generates a signal to control the PC
increment and prepares to load the next decoding instruc-
tion.

Fig. 3 State transfer diagram

3

Dean&Francis

Through the above design, the control unit is able to ef-
fectively parse and execute various instructions while
working closely with the data path to ensure that the CPU
maintains high efficiency and stability during execution.
This design approach lays a solid foundation for further
functional expansion and performance optimization.

3. Results
In this experiment, the designed 16-bit CPU successfully
fulfills all the expected functions and passes the simulation

verification with a variety of instructions [11]. The data
path, as in Fig. 4, and the control unit, as in Fig. 5, of the
various modules, including register sets, ALUs, program
counters, and state machines, show good functionality and
stability. The simulation results show that the CPU is able
to correctly execute instructions such as addition, subtrac-
tion, bitwise-and, bitwise-or, and conditional jumps, and
all the arithmetic results are consistent with expectations,
as in Fig. 6.

Fig. 4 RTL Data path

Fig. 5 RTL Control unit
In the comprehensive analysis, the hardware resource
utilization of the CPU is more reasonable, and the timing
simulation results show that the clock cycle of the system
meets the design requirements, and the delay of the crit-
ical path is within the acceptable range. In addition, the
scalability of the instruction set is preliminarily verified,

and by adding new instructions, the CPU still maintains
good operational performance and functional consistency.
The simulation also shows that when processing complex
instructions, the data path and control unit are well coor-
dinated and can effectively complete the parsing and exe-
cution of instructions.

4

Dean&Francis

Fig. 4 RTL Data path

Fig. 5 RTL Control unit

In the comprehensive analysis, the hardware resource utilization of the CPU is more reasonable,

and the timing simulation results show that the clock cycle of the system meets the design
requirements, and the delay of the critical path is within the acceptable range. In addition, the
scalability of the instruction set is preliminarily verified, and by adding new instructions, the CPU
still maintains good operational performance and functional consistency. The simulation also shows
that when processing complex instructions, the data path and control unit are well coordinated and
can effectively complete the parsing and execution of instructions.

Fig. 6 CPU timing simulation results

Overall, the CPU designed in this experiment achieves the expected design goals, verifies the

feasibility and stability of the architecture, and provides strong support for subsequent optimization
and expansion.

Fig. 6 CPU timing simulation results
Overall, the CPU designed in this experiment achieves the
expected design goals, verifies the feasibility and stability
of the architecture, and provides strong support for subse-
quent optimization and expansion.

4. Conclusion
Through this experiment, we have successfully designed
and implemented a 16-bit simplified CPU based on digital
integrated circuits, and carried out a comprehensive sim-
ulation to verify it. The experimental results show that the
CPU can correctly execute basic instructions including
addition, subtraction, bitwise and, bitwise or, conditional
jump, etc., which fully verifies the effectiveness and sta-
bility of its design. The design of the data path and control
unit is the core part of the whole CPU architecture, where
the data path is responsible for arithmetic and data trans-
mission, and the control unit ensures the sequential execu-
tion of instructions by generating precise control signals.
Through programming in Verilog Hardware Description
Language [3,8] and simulation with EDA tools, we veri-
fied the rationality of the design and ensured the coordina-
tion and compatibility among the modules.
The successes in this design are mainly reflected in the
following aspects: firstly, the data path is reasonably de-
signed, and the key modules such as ALU, register group
and multiplexer can effectively work together to ensure
the smooth execution of instructions. Second, the control
unit adopts the finite state machine (FSM) design, which
can accurately decode the instructions and generate the
corresponding control signals, thus realizing the correct
processing of complex instructions. In addition, in terms
of the utilization of hardware resources, we ensure that
the CPU achieves the expected functions while occupying

fewer resources by optimizing the design.
However, some challenges and limitations were revealed
during the experiments. Although the designed CPU is ca-
pable of handling basic arithmetic and logic instructions,
the existing ALU and control unit may need to be further
optimized when dealing with more complex operations
(e.g., multiplication, division, etc.). In addition, simulation
results show that the state machine design of the control
unit will face higher complexity as the instruction set
expands and complexity increases, which may lead to a
more difficult design and verification process.
Future research can further extend and optimize the
functionality and performance of the CPU based on the
existing design. First, the instruction set can be enriched
by adding support for complex instructions (e.g., multi-
plication, division, displacement operations, etc.), and the
state machine design of the control unit can be optimized
to adapt to more complex instruction processing require-
ments. In addition, the introduction of pipelined design
can significantly improve the processing efficiency of
instructions and enable CPUs to perform better in multi-
tasking environments, although this will also increase the
complexity of design and verification.
In addition, in order to enhance the utilization efficiency
of hardware resources, optimization of circuit layout and
timing control can be considered to reduce power con-
sumption and increase computation speed. The explora-
tion of multi-core architectures is also a direction worthy
of in-depth study, which will help cope with the growing
demand for parallel computing. With these improvements,
CPU designs can not only meet current performance re-
quirements, but also support more complex and efficient
computing tasks in the future.

5

Dean&Francis

References
[1]. J. H. Lee, S. E. Lee, H. C. Yu and T. Suh, “Pipelined CPU
Design With FPGA in Teaching Computer Architecture,” in
IEEE Transactions on Education, vol. 55, no. 3, pp. 341-348,
Aug. 2012, doi: 10.1109/TE.2011.2175227.
[2]. A. Yıldız, H. F. Ugurdag, B. Aktemur, D. İskender and
S. Gören, “CPU design simplified,” 2018 3rd International
Conference on Computer Science and Engineering (UBMK),
Sarajevo, Bosnia and Herzegovina, 2018, pp. 630-632, doi:
10.1109/UBMK.2018.8566475.
[3]. Lai, Xianzhi. Simple CPU design based on FPGA[J].
Journal of Chongqing Vocational and Technical College, 2005,
14(1): 117-119.
[4]. Korobilis C. Design of a CPU using VHDL[D]. Aristotle
University of Thessaloniki, 2020.
[5]. WANG Ben-You, SU Shou-Bao, WANG De-Ru. An FPGA-
based CPU design[J]. Computer Technology and Development,
2008, 18(6): 221-224.
[6]. X. Liu, L. Fu, W. Rao, X. Lin, M. Liao and B. Shi, “Multi-
Cycle CPU Design With FPGA for Teaching of Computer
Organization Principle,” 2019 14th International Conference on
Computer Science & Education (ICCSE), Toronto, ON, Canada,
2019, pp. 472-477, doi: 10.1109/ICCSE.2019.8845494.
[7]. J. B. Lazaro, M. D. Pabiania, L. J. S. Bitangcor, J. C. B.
De Torres, J. M. A. Dumapit and J. N. Mapote, “Design of

a 32-bit Datapath for a Reduced Instruction Set Computers
(RISC) Implementation using the DE0-nano FPGA,” 2024
16th International Conference on Computer and Automation
Engineering (ICCAE), Melbourne, Australia, 2024, pp. 88-92,
doi: 10.1109/ICCAE59995.2024.10569847.
[8]. T. Cao, “Implementation and Research of Vivado HLS’s
Function on FPGA,” 2022 3rd International Conference on
Computer Science and Management Technology (ICCSMT),
Shanghai , China , 2022, pp . 240-243, doi : 10 .1109/
ICCSMT58129.2022.00057.
[9]. M. Becker, “Faster Verilog simulations using a cycle based
programming methodology,” Proceedings. IEEE International
Verilog HDL Conference, Santa Clara, CA, USA, 1996, pp. 24-
31, doi: 10.1109/IVC.1996.496014.
[10]. S. Alsubaei, S. M. Qaisar and W. Alhalabi, “A VHDL
based Moore and Mealy FSM example for education,” 2017
IEEE 2nd International Conference on Signal and Image
Processing (ICSIP), Singapore, 2017, pp. 456-459, doi: 10.1109/
SIPROCESS.2017.8124583.
[11]. G. Prasad, “A Tutorial on Design of Datapath and
Controller of an ALU using Verilog and Verification using Open
Source EDA Tools,” 2021 2nd International Conference on
Communication, Computing and Industry 4.0 (C2I4), Bangalore,
India, 2021, pp. 1-4, doi: 10.1109/C2I454156.2021.9689339.

6

