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Abstract:
Accurate weather forecasting, especially temperature prediction, is fundamental for various segments within the UK, 
including agriculture, energy, and policy planning, as the nation adapts to the effects of climate change. This study 
addresses the limitations of conventional linear models in capturing the complex, non-linear relationships within 
meteorological data by comparing the effectiveness of different Machine Learning (ML) strategies. This study evaluates 
the performance of baseline ML models, such as Linear Regression (LR), Support Vector Regression (SVR), and 
K-Nearest Neighbors (KNN). It also examines advanced ensemble and boosting models such as Decision Tree (DT), 
Random Forest (RF), XGBoost (XGB), LightGBM (LGBM), and CatBoost, using a comprehensive dataset from 
Heathrow Airport. Detailed preprocessing, model training, and optimization through cross-validation were conducted, 
with performance assessed using Mean Squared Error (MSE) and Coefficient of Determination (R²) metrics. The results 
demonstrate that ensemble methods, particularly XGB and LGBM, offer superior predictive accuracy for weather 
forecasting tasks, highlighting their potential to enhance predictive models in meteorological applications.
Keywords: Weather forecasting, Temperature prediction, Machine Learning, Random Forest, XGBoost.

1. Introduction
While many studies have explored the application of ML 
techniques to weather forecasting, a critical gap remains 
in understanding their effectiveness in specific localized 
contexts, such as Heathrow Airport, where accurate pre-
dictions are essential for operational safety, efficiency, and 
planning. This study is motivated by the aim to bridge the 
existing knowledge gap by examining the performance of 
different ML models for temperature prediction at Heath-
row in depth.
A thorough understanding of weather forecasting is vital 
for decision-making in sectors like agriculture, energy, 
and policy planning, especially as the UK faces increas-
ing impacts from climate change. Accurate temperature 
predictions are essential for supporting climate adaptation 
efforts, ensuring resilience across critical sectors, and 
maintaining safety and efficiency in operations at strategic 
locations like Heathrow [1-5]. Although ML techniques 
have shown promise as alternatives to conventional 
models, which often fail to capture complex, non-linear 
relationships within meteorological data, comprehensive 
evaluations of these models for temperature prediction in 
specific localized settings remain limited.
This study seeks to fill this gap by assessing the perfor-

mance of various ML models for temperature prediction 
at Heathrow, including baseline models such as LR, SVR, 
and KNN, as well as advanced ensemble and boosting 
models like DT, RF, XGB, LGBM, and CatBoost. Recent 
studies have highlighted the potential of ML algorithms 
in enhancing forecasting accuracy where traditional mod-
els underperform [6-8]. However, identifying the most 
effective models for localized weather forecasting and 
providing insights into their applicability in meteorology 
remains a priority.
The methodology adopted involves preprocessing, nor-
malization, transformation, and handling of missing 
values. The models are trained and optimized using 
cross-validation techniques, with performance evaluated 
using MSE and R² metrics. By employing a multi-model 
approach and integrating various ML methodologies, this 
research contributes to the field of weather forecasting by 
addressing the gaps in the current literature and optimiz-
ing predictive models for specific climatic conditions.

2. Literature References
Extensive research has shown that ML algorithms greatly 
improve weather forecasting by accurately identifying in-
tricate and non-linear correlations in meteorological data 
that are often overlooked by conventional models. Tahsin 
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et al. [6] demonstrated the efficacy of various ML tech-
niques, such as DT, RF, SVM, and ANN, in forecasting 
temperature in Chittagong, Bangladesh. However, in con-
trast to the current research that only examines Heathrow, 
their analysis was conducted within a broader regional 
framework.
El Hafyani et al. [7] utilized a multi-view stacking tech-
nique, merging XGB and LSTM networks to enhance pre-
cipitation forecasting in Morocco. This study showcases 
the benefits of ensemble approaches in wider scenarios, as 
opposed to the focused strategy of employing DT-based 
models for localised weather forecasting specifically at 
Heathrow. Furthermore, Kaya et al. [5] presented the 
adaptability of RF and other models in different fields, 
emphasizing its significance in predicting air temperature.
Ferchichi et al. [8] discovered that advanced models such 
as RF and ANN provide superior performance compared 
to standard models when it comes to predicting sea sur-
face temperatures in Canada. This finding supports the 
current study’s decision to utilize sophisticated models. 
Contrary to Ferchichi et al.’s focus on coastal sea surface 
temperature (SST), this study utilizes gradient boosting 
techniques (XGB and LGBM) to analyze unique meteoro-
logical conditions at Heathrow.
Ahmed et al. [3] emphasized the importance of using 
MMEs to decrease uncertainties in temperature pre-
dictions in Pakistan. Although the current study shares 
similarities with other studies in its use of a multi-model 
approach, its main objective is to optimize models spe-
cifically for the setting of Heathrow. Anjali et al. [2] and 
Wolff et al. [1] also investigated the efficacy of decision 
tree-based models, such as RF and XGB, for more exten-
sive temperature forecasting tasks, demonstrating their 
proficiency in handling non-linear data efficiently.
This research aims to enhance the accuracy of weather 
forecasting models by optimizing ML models specifi-
cally for predicting localized temperatures at Heathrow. 
It builds upon previous findings and addresses the gaps 
highlighted in broader studies.

3. Methodology
3.1 Data Preprocessing
The dataset consists of daily weather observations from 
Heathrow, which include meteorological variables such as 
cloud cover, humidity, pressure, radiation, precipitation, 
sunshine, and temperature measures (mean, minimum, 
and maximum). To use this data effectively, preprocessing 
steps standardized and prepared the data. All categorical 
variables were converted to numerical values utilizing 
techniques such as one-hot encoding to enhance the 
processing efficiency of ML algorithms. The numerical 

features were normalized using min-max normalization, 
which rescaled each feature to a range of [0, 1]. This pre-
vented features with bigger magnitudes from having a dis-
proportionate influence on the model’s learning process. 
The min-max normalization formula is defined as:

	 x ' =
x x
x x

max min

i min−
−

� (1)

Where xi  is the original value, and xmin  and xmax  are the 
minimum and maximum values of the feature, respective-
ly.

3.2 Model Implementation
Nine models were implemented: LR, SVR, KNN, DT, RF, 
XGB, LGBM, and CatBoost. Each model’s implementa-
tion details are as follows:
3.2.1 Linear Regression

LR aims to find the best-fit line that minimizes the residu-
al sum of squares between observed targets and predicted 
values. The model is represented as:
	 y x x xˆ = + + + +β β β β0 1 1 2 2 ··· n n � (2)

Where ŷ  is the predicted value, xi are the input features, 

and βiarethecoefficients.

3.2.2 Support Vector Regression

SVR is a supervised learning model that finds a hyper-
plane in a higher-dimensional space to fit data points with-
in a threshold. The objective function of SVR is:

	 minimize 0,1
2

w C max y y2 + − −∑
i=

n

1
( i iˆ ) � (3)

Where w is the weight vector, C is the penalty parameter, 
and   is the margin of tolerance.
3.2.3 K-Nearest Neighbors

KNN classifies a data point based on its K nearest neigh-
bors. The prediction for regression is:

	 y yˆ =
K
1 ∑

i

K

=1
i � (4)

Where ŷ  is the predicted value, and yi  are the values of 
the K nearest neighbors.
3.2.4 Decision Tree

DT is a non-parametric algorithm using a tree-like model 
of decisions. The splitting criterion is:
	 SplitCriterion argmin Impurity L Impurity R= +( ( ) ( )) �(5)
Where L and R represent the subsets resulting from the 
split.
3.2.5 Random Forest

RF is an ensemble method constructing multiple DTs and 

2



Dean&Francis

averaging their predictions. The prediction ŷ  is:

	 y yˆ ˆ=
M
1 ∑

m

M

=1
m � (6)

Where ŷm is the prediction from the m-th tree, and M is 
the total number of trees.
3.2.6 XGBoost

XGB is an optimized gradient boosting algorithm. The 
objective function is:

	 Obj l y y f(θ ) = + Ω∑ ∑
i k= =

n K

1 1
( , )i i kˆ ( ) � (7)

Where l represents the loss function, and Ω( fk )  is the 
regularization term.
3.2.7 LightGBM

LGBM uses a leaf-wise growth strategy and an optimized 
histogram-based DT algorithm. Its objective function is:

	 Obj l y y w b= + +∑ ∑
i j= =

n J

1 1
( , ) ( )i i j jˆ λ 2 2 � (8)

Where λ is the regularization parameter, and wj and bj are 
weights and biases.
3.2.8 CatBoost

CatBoost handles categorical variables with a gradient 
boosting algorithm. The transformation for categorical 
features is:

	 x 'cat =
∑i C i∈ train

C
I y C

train

(
+

= +

β
) α

� (9)

Where α and β are smoothing parameters.

3.3 Performance Evaluation Metrics
Models were evaluated using MSE and R². Residuals 
were analyzed for systematic patterns in prediction errors. 
The MSE is calculated as:

	 MSE y y= −
1
n∑i=

n

1
( )i iˆ 2 � (10)

Where yi  is the actual value, ŷi is the predicted value, and 
n is the number of observations.
The R² is calculated as:

	 R2 = −1
∑
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Where y
−

 is the mean of the actual values.

4. Results
4.1 Dataset Splitting
The dataset from the European Climate Assessment 
Dataset (ECAD) [9, 10] comprises daily meteorological 
observations from Heathrow, including variables like tem-
perature, cloud cover, wind speed, humidity, and more, 
collected over 3654 days. The data underwent rigorous 
cleaning and transformation to retain the original units. 
An 80-20 split was implemented, assigning 80% to train-
ing and 20% to testing. The training set, ( , )X ytrain train , 
was utilized for model development, while the testing set, 
( , )X ytest test , was employed to evaluate performance on 
unseen data, ensuring unbiased estimates. This strategic 
preprocessing and partitioning enabled a thorough evalua-
tion of model performance tailored to Heathrow’s distinct 
meteorological characteristics. This method guarantees ro-
bust validation, enhancing the applicability of the findings 
to real-world scenarios.

4.2 Learning Curve Analysis
Learning curves (Fig. 1) for all models, except for SVR, 
reveal convergence as training data increases, indicated 
by declining error rates. Models like RF, XGB, LGBM, 
and CatBoost demonstrated significant improvement with 
additional data, reflecting their proficiency in generalizing 
and managing intricate meteorological patterns. In con-
trast, SVR exhibited substantial discrepancies between 
training and validation errors (Fig. 2), pointing to under-
fitting and limited generalizability. These findings are con-
sistent with prior research that questions SVR’s capacity 
to handle complex, non-linear relationships frequently 
encountered in climate prediction tasks [1, 2]. The notable 
performance of ensemble models like RF and XGB illus-
trates their capability to accurately capture the complexity 
of meteorological data.
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Fig. 1 Learning curves for the different models
4.3 Model Performance Comparison
The assessment of multiple ML models was conducted 
using MSE and R2 metrics. The ensemble approaches, no-
tably RF and XGB, delivered notable outcomes, achieving 
the minimal MSE of 0.0006 and the maximal R² value of 
0.9822. These results confirm their proficiency in detect-
ing intricate data patterns, as demonstrated in Figure 3. 
The significant performance of RF and XGB aligns with 
earlier studies highlighting the effectiveness of tree-based 

ensemble techniques in meteorological forecasting [3, 5]. 
In contrast, SVR and KNN underperformed, evidenced 
by greater MSE and lower R² values (Table 1). The R² 
of 0.0000 for SVR suggests underfitting, while the R² 
of 0.8651 for KNN reveals its limitations in capturing 
non-linear dynamics. This evaluation suggests that al-
though simpler models may offer computational simplici-
ty, they often lack the necessary precision for applications 
where high forecasting accuracy is critical.
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Fig. 2 Training and Validation Loss for SVR

Fig. 3 Model Comparison of MSE and R² Scores

Table 1. Performance Metrics of Different Models
Model MSE R²

LR 0.0006 0.9817
SVR 0.0320 0.0000
KNN
DT
RF

XGB
LGBM

CatBoost

0.0043
0.0006
0.0006
0.0006
0.0008
0.0007

0.8651
0.9810
0.9822
0.9822
0.9805
0.9800

4.4 Residuals Analysis
The residual distribution (Fig. 4) indicates that RF and 
XGB residuals are closely aligned around zero, reflect-
ing high predictive accuracy and minimal error margins. 
Conversely, SVR and KNN exhibit broader residual dis-
tributions, signifying elevated error rates and reduced reli-
ability. These findings underscore the benefits of ensemble 

models in reducing prediction errors and enhancing fore-
cast reliability, crucial for ensuring operational safety and 
strategic planning in high-risk con- texts like Heathrow.

4.5 Scatter Plot Analysis
Fig. 5 presents a comparative analysis of different models 
against actual temperature values. RF and XGB exhibit 
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the closest alignment with actual values, suggesting their 
advanced predictive capabilities, while SVR and KNN 
demonstrate less accuracy. This analysis further substan-
tiates the conclusion that ensemble methods, particularly 

RF and XGB, are more competent at managing complex 
data structures, especially in the context of weather fore-
casting.

Fig. 4 Residuals Distribution for Different Model
Fig. 5 Comparison of Different Models on Predicted vs. Actual Temperatures

4.6 Model Comparison Discussion
The results of this research are consistent with earlier find-
ings that identified RF and XGB as the most adept models 
for weather prediction tasks, attributed to their capacity 
to handle intricate and non-linear data relationships [6, 
7]. This study extends the application of these models by 
demonstrating their effectiveness in specific environments 
such as Heathrow Airport, characterized by its unique 
weather patterns and operational demands.
Contrarily, the lower performance of SVR and KNN 
aligns with previous research that highlighted their limita-
tions in dealing with highly variable and complex datasets 
[1, 2]. These findings suggest that attaining high accuracy 

necessitates prioritizing ensemble methods. Moreover, 
the findings hold practical significance for sectors reliant 
on precise weather forecasting, including aviation and 
agriculture. Future research should continue to explore 
advanced ML techniques across varied climatic regions 
to improve the adaptability and generalization of weather 
prediction models.

5. Conclusion
This study evaluated a diverse range of ML models, en-
compassing basic methods such as LR, SVR, and KNN, 
alongside advanced ensemble approaches like DT, RF, 
XGB, LGBM, and CatBoost, aimed at forecasting tem-

6



Dean&Francis

peratures at Heathrow. The findings indicate that ensemble 
methods, specifically RF, XGB, and LGBM, demonstrate 
enhanced predictive abilities, affirming their potential 
in weather forecasting. This research offers a theoretical 
foundation for deploying advanced ensemble methods 
in meteorological modeling and supports industries that 
depend on precise weather predictions, including agricul-
ture, energy, and policy formulation. Future studies should 
focus on applying diverse datasets and expanding evalua-
tion criteria to enhance model application and validity.
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