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Abstract:
Pistachios are highly nutritious and have a large market presence. Since different species vary in quality and can be sold 
at different prices, it is crucial to classify prominent species accurately. Additionally, given the large number of species, 
improving the speed of species identification is also important. However, traditional methods for identifying pistachio 
species can be challenging in both accuracy and efficiency. This study examines the utilization of Deep Learning 
technologies to automatically classify the two pistachio species from Turkey: Kirmizi and Siirt. The performance of 
Convolutional Neural Networks (CNNs) is compared to that of Vision Transformers. Evaluated CNN models include 
ResNet and EfficientNet, which were trained and tested using both actual and augmented images. The experimental 
results show that ResNet achieves the best accuracy and fastest inference time, the peak accuracy is 99.30%. Data 
augmentation improves performance but increases inference time. The research findings emphasize the potential of 
Deep Learning for improving pistachio species classification.
Keywords: Pistachio; Convolutional Neural Networks; Vision Transformer; Data Augmentation.

1. Introduction
Pistachios are highly nutritious, contain unsaturated fatty 
acids essential for humans [1], and are widely used in 
snack foods. Their dark green kernels make them espe-
cially popular in the ice cream and pastry industries. As a 
high-cost agricultural product, pistachio prices vary based 
on quality, with different varieties commanding different 
prices. Turkey is a major global producer of pistachios, 
offering many varieties. Kirmizi and Siirt pistachios are 
particularly popular for their abundant fruits and reduced 
tendency to periodicity. Thus, classifying these two variet-
ies from others is important.
In recent years, deep learning models have made signifi-
cant advances and have been commonly utilized in com-
puter vision (CV) domains, such as image classification, 
autonomous driving, and medical imaging. More recent 
innovations, such as Transformers, have been used to 
enhance their capability and efficiency. This paper intro-
duces three deep-learning models for pistachio species 
classification and discusses their performance in Section 3.

2. Literature Review
Many studies have explored various methods for classi-
fying pistachio species, including both machine learning 
and deep learning approaches. While traditional CNNs 
are commonly used, newer models are still relatively un-
derutilized. Below is a summary of some of these studies.

The study [2] aimed to distinguish between Kirmizi and 
Siirt species using deep learning algorithms, including 
AlexNet, VGG16, and VGG19. Classification success 
was assessed using five key metrics. The results indicated 
94.41% accuracy with AlexNet, 98.84% accuracy with 
VGG16, and 98.14% accuracy with VGG19.
A computer vision system (CVS) was applied, incorpo-
rating image processing techniques and artificial intel-
ligence methods [3]. Images were initially segmented, 
followed by the extraction of morphological and shape 
features. The method used to reduce dimensionality was 
Principal Component Analysis (PCA), after which k-NN 
and weighted k-NN were utilized for classification. With 
10-fold cross-validation, the PCA-based weighted k-NN 
method achieved an accuracy of 94.18%.
CNN algorithms were utilized to classify defective and 
perfect pistachios [4]. A dataset comprising 958 imag-
es was used, and the results showed that the accuracies 
achieved were 95.8% with GoogleNet, 97.2% with Res-
Net, and 95.83% with VGG16.
Another study [5] aimed to classify wild pistachios into 
four different ripeness levels. Linear Discriminant Analy-
sis (LDA), Quadratic Discriminant Analysis (QDA), and 
Artificial Neural Networks (ANN) were used as classi-
fiers. Following image preprocessing, feature extraction 
and selection, the optimal features were used to train the 
classifiers. Classification rates achieved were 93.75% with 
LDA, 97.5% with QDA, and 100% with ANN, showing 
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the efficacy of the imaging algorithm when paired with 
both linear and non-linear classification methods for as-
sessing the ripeness stages of wild pistachios.
The study [6] developed a system to identify whether the 
mouths of various pistachios are opened or closed. The 
models based on CNNs, including ResNet50, ResNet152, 
and VGG16, were employed for feature extraction and 
classification of the images. The classification accuracies 

for the models were recorded at 85.28%, 85.19%, 83.32%.

3. Method
This section introduces three models used for classifying 
pistachio species, each with different structures, as catego-
rized in Fig.1.

Fig.1 Architecture classification of the methods
3.1 ResNet
ResNet was proposed to solve the problem of network 
degradation [7]. The integration of shortcut connections 
and residual representations made these networks simpler 
to optimize relative to earlier models, and their increased 
depth contributed to improved accuracy. The architecture 
of the residual block is illustrated in Fig.2.
X represents the input image of a block, F W W X= 2 1σ ( )  
represents the operating function in the block, which in-
cludes two weight layers: W1 , W2 , and σ  indicates the 
RELU activation function. The biases are omitted for sim-
plicity. If the dimensions of X and F are equal, the block’s 
output can be obtained by:
 Y F X W X= +( ,{ i})  (1)
Else,
 Y F X W W X= +( ,{ i s})  (2)

In which, Wi  represents the i-th weight layer, and Ws  is a 
linear projection performed by the shortcut connections to 
match the same dimensions.
In image classification tasks [8, 9, 10], ResNet has 
achieved better performance. This architecture is also used 
to train the pistachio classifier in this study.

Fig.2 The architecture of the residual block
3.2 EfficientNet
Compared to merely increasing the depth in a neural net-
work, fully balancing the depth, width, and resolution of 
a network can lead to better performance [11]. Therefore, 

EfficientNet was proposed. This approach employs a com-
pound scaling method, which uses a compound coefficient 
ϕ  to systematically scale the network’s depth, width, and 
resolution coherently:

depth d: =αϕ

width w: = βϕ

resolution r: = γ ϕ

s t. . 2α β γ· 2 2· ≈

α β γ≥ ≥ ≥1, 1, 1

(3)

The constants α β γ, ,  can be obtained through a small 
grid search. The purpose of optimization is to ensure that 
the model achieves maximum accuracy within specific re-
source limitations, as shown:

max Accuracy N d w rd r, ,ω ( ( , , ))

s t Memory N target memory. . _( ) ≤
FLOPS N target flops( ) ≤ _

(4)

Where N  represents ConvNet. Memory  refers to the 
amount of RAM required by the model during computa-
tion. FLOPS  refers to Floating Point Operations Per Sec-
ond, measuring a model’s computational complexity.
In the first step, ϕ  is fixed at 1, and then the optimal val-
ues of α β γ, ,  for EfficientNet-B0 are found using a small 
grid search based on Equation 3 and 4. In the second step, 
α β γ, ,  are fixed, and the baseline network is scaled up 
with increasing ϕ  based on Equation 3 to obtain Effi-
cient-B1 through B7. The EfficientNet-B0 is utilized in 
this paper to classify pistachio species.

3.3 Vision Transformer
Originally introduced for machine translation, transform-
ers have since become the leading method for achieving 
state-of-the-art (SOTA) performance across various NLP 
tasks. Transformer was first applied to CV tasks in [12], 
where it was named Vision Transformer (ViT).
The standard Transformer accepts 1D sequences as input. 
In CV tasks, the 2D image X ∈H W C× ×  are reshaped into 
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a sequence of flattened 2D patches X p ∈
N P C× ⋅( )2

, where 

( , )H W  represents the resolution of the image, C rep-
resents the channels’ number, ( , )P P  represents the reso-
lution of image patches, and N HW P= / 2  is the total 
patches number. The sequence of embedded patches 
( z X0

0 = class ) is added with a learnable embedding, with its 

state at the output of the Transformer encoder ( zL
0 ) serving 

as the image representation Y. The explanation of ViT is 
shown as:

 
E E

z X X E X E X E E0

∈ ∈

= … +

 

  
(P C D2

class p p p pos

⋅ ×)
; ; ; ; ,

,

1 2

pos
( 1)N D+

N

 (5)

 z MSA LN z z d D'd d d= + = …( ( − −1 1)) , 1  (6)

 z MLP LN z z d Dd d d= + = …( ( ' ')) , 1  (7)

 Y LN z= ( L
0 )  (8)

D refers to the fixed size of the latent vector maintained 
across all layers. MSA denotes multi-headed self-atten-
tion, while MLP is made up of two layers incorporating 
GELU non-linearity. LN stands for Layernorm, which is 
applied before each block, and residual connections are 
used following each block. ViT has demonstrated leading 
performance on numerous image classification bench-
marks, it is also utilized in this study for classifying pista-
chio species.

3.4 Confusion Matrix
The confusion matrix is a standard tool for assessing im-
age classification performance, and it is employed in this 
study to develop performance metrics for the trained pis-
tachio classifier. Table 1 presents the specifics of the two-
class confusion matrix.

Table 1. Two-class confusion matrix
True Class

Positive(P) Negative(N)

Predicted Class
True(T) TP FN
False(F) FP TN

1. TP: True Positive. The real class of the sample is 1, and 
it is correctly predicted as 1.
2. FN: False Negative. The real class of the sample is 1, 
but it is incorrectly predicted as 0.
3. FP: False Positive. The real class of the sample is 0, but 
it is incorrectly predicted as 1.

4. TN: True Negative. The real class of the sample is 0 
and it is correctly predicted as 0.

3.5 Performance Metrics
Five Metrics are implemented in this study, all the metrics 
are derived from the two-class confusion matrix in Table 2.

Table 2. Calculation formulas of Performance Metrics
Performance Metrics Calculation formula

Accuracy
TP TN FP FN+ + +

TP TN+

F-1 Score
2TP FP FN+ +

2TP

Recall
TP FN

TP
+

Precision
TP FP

TP
+

Specificity
TN FP

TN
+

3



Dean&Francis

4. Experimental results and discussion
4.1 Pistachio Image Dataset
A dataset of pistachio images was collected from the Kag-
gle repository, featuring two varieties: Kirmizi and Siirt. 
The dataset comprises 2,148 images, including 1,232 of 
Kirmizi and 916 of Siirt. In this study, 60% of the data 
was designated for training the model, 20% was used for 
validation, and the remaining 20% was reserved for as-
sessing the final model’s performance.

4.2 Experiment I: Comparison of three mod-
els
In the first experiment, model training was performed 
with the actual dataset over ResNet, EfficientNet, and ViT. 
Fig.3 shows the confusion matrices, providing a compre-
hensive overview of their performance. By utilizing these 
matrices, other performance metrics are calculated, as 

shown in Table 3.
According to Table 3, ResNet achieved the highest classi-
fication success, with an accuracy of 99.30%. EfficientNet 
achieved an accuracy of 94.66%, but Vision Transformer 
only reached 83.06% accuracy. The inference time of all 
the models was also compared, results in Table 4 show 
that ResNet achieved the lowest inference time per image, 
at 0.0169 seconds. These results clearly show that CNNs 
are preferable for training pistachio species classifiers, 
ResNet is both accurate and efficient for classifying the 
two varieties of pistachios.
CNNs use convolutional layers to extract features and 
excel at capturing local spatial information, while ViT uti-
lizes self-attention mechanisms to process image data and 
capture global context and relationships [13]. It is con-
cluded that for pistachio species classification, focusing 
on local information is more important than capturing the 
global context.

(a) ResNet (b) EfficientNet (c) Vision Transformer

Fig.3 Confusion matrices for all the models

Table 3. Performance metrics for all the models
Performance Metrics ResNet EfficientNet Vision Transformer

Accuracy 0.9930 0.9466 0.8306
F-1 Score 0.9939 0.9532 0.8630

Recall 0.9919 0.9474 0.9312
Precision 0.9959 0.9590 0.8042

Specificity 0.9946 0.9457 0.6957

Table 4. Inference Time of all models using GPU (seconds per image)
ResNet EfficientNet Vision Transformer

Inference Time 0.0169 0.0202 0.1486

4.3 Experiment II: Augmented Data Training
The second experiment compares how models perform 
with actual and augmented datasets. Table 5 contains a 
detailed overview of the performance metrics, where both 

ResNet and EfficientNet are compared to enhance the 
credibility of the results.
The results indicate that data augmentation improves clas-
sification performance, but it also leads to increased in-
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ference time. Thus, the decision to use data augmentation 
depends on a balance between accuracy and acceptable 

inference time, which is different in specific tasks.

Table 5. Performance comparison over the actual dataset and augmented dataset

Performance Metrics
Actual dataset Augmented dataset

ResNet EfficientNet ResNet EfficientNet
Accuracy 0.9930 0.9466 0.9930 0.9629
F-1 Score 0.9939 0.9532 0.9940 0.9683

Recall 0.9919 0.9474 1.0000 0.9879
Precision 0.9959 0.9590 0.9880 0.9494

Specificity 0.9946 0.9457 0.9837 0.9293
Inference Time 0.0169 0.0202 0.0316 0.0252

5. Conclusion
This study demonstrates that CNNs outperform Vision 
Transformers in classifying pistachio species. Among 
the CNN architectures evaluated, ResNet emerged as the 
most effective, achieving a high classification accuracy of 
99.30% and the lowest inference time of 0.0169 seconds 
per image. Although ResNet performs best with the cur-
rent dataset, results may vary with different datasets. This 
variability emphasizes the need for ongoing model assess-
ment and adaptation to maintain accuracy. Additionally, 
while data augmentation enhances classification perfor-
mance, it also increases inference time, a balance between 
accuracy and efficiency will be needed to meet market 
requirements.
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