
Dean&Francis

Enhancing the Efficiency of Distributed Storage Systems through
XOR-Optimized Cauchy Reed-Solomon Codes

Yu Fu, *

2School of Xiamen University, Tan Kah Kee College, Zhangzhou, China
*Corresponding author: fuyu1104227103@gmail.com

Abstract:
In today‘s society, we have entered the era of big data and the Internet of Things. The rise of services such as artificial
intelligence, cloud storage, and the metaverse has led to increased demands for data transmission and storage. People
now require not only greater capacity but also higher efficiency, more powerful hardware, and advanced algorithms.
storageThe Reed-Solomon (RS) code, as a highly effective error correction code, is officially applied in fields such as
data storage and data transmission. The Cauchy Reed-Solomon (CRS) Code, which is based on the RS code, utilizes a
Cauchy matrix instead of the original Vandermonde matrix and replaces the original matrix multiplication with XOR
operations. This paper primarily explores how the XOR-optimized Cauchy Reed-Solomon Code improves the efficiency
of distributed storage systems, It was discovered that using lookup tables to store frequently used data and operations
can further enhance the efficiency of storage systems and its future applications.
Keywords: XOR, Distributed Storage, Efficiency Optimization

1. Introduction
As the importance of distributed storage systems contin-
ues to grow with the development of big data and cloud
computing, cloud storage allows users to store data on the
cloud through the network, enabling remote access and
data sharing. In big data, distributed storage systems are
used to store and process large amounts of information,
facilitating parallel computing and data analysis. This
technology is widely utilized by companies such as Goo-
gle and Amazon. In distributed storage systems, error cor-
rection codes are particularly important for ensuring data
reliability. The RS code, as a traditional error correction
code, is used to detect and correct multi-symbol errors. It
can correct not only single-bit errors but also errors that
affect multiple bits simultaneously, making it widely ap-
plied in data storage and transmission.
RS codes have strong error correction capabilities, flex-
ible configuration, and a wide range of applications. RS
codes have been in existence for nearly 70 years, yet they
are still applied across various fields, demonstrating their
reliability and wide applicability. However, traditional RS
codes face challenges such as high computational com-
plexity and high redundancy RS codes need a substantial
level of redundancy in the sent data to achieve strong
error-correcting capabilities which can lower the trans-
mission efficiency. Fixed data length: RS codes are less

adaptable than other coding systems since they require a
fixed data length[1], difficulties in hardware implementa-
tion, and latency issues.
To address these problems, researchers have developed
the Cauchy Reed-Solomon code (CRS). The primary fo-
cus of this paper is to investigate how CRS codes utilize
XOR operations to replace traditional multiplication oper-
ations in order to improve efficiency, to demonstrate their
advantages over traditional RS codes, and to explore their
performance in practical applications.

2. Related work
2.1 RS code and CRS code
2.1.1 RS code

In the mid-20th century, with the development of commu-
nication technology, the demand for data transmission in-
creased significantly. Errors in data transmission became a
serious problem, especially in long-distance communica-
tion where signals were prone to interference, leading to
erroneous transmissions. To address the need for effective
error detection and correction, Irving S. Reed and Gustave
Solomon jointly invented the RS code in 1960. RS codes
are based on polynomial mathematics over finite fields, al-
lowing data blocks to be encoded as polynomials and en-
hancing transmission reliability by adding redundant sym-

ISSN 2959-6157

1

Dean&Francis

bols. Shortly after its invention, RS codes were applied
in disk storage systems to correct data corruption caused
by read/write errors. Over time, RS codes were gradually
adopted by multiple international standards, becoming a
core technology in digital communication and storage.[2]
RS codes are very powerful nowadays it is still the only
MDS coding alternative in a large number of storage ap-
plications. The application of CRS codes is particularly
widespread in modern communication systems, especially
in high-reliability areas such as mobile communications,
satellite communications, digital TV broadcasting, and
deep space communication However, they have the dis-
advantage of requiring n Galois Field multiplications
per coding block, and since coding blocks are typically
smaller than a machine’s word size, they can require 2n to
8n multiplications per machine word.Thus, RS codes are
expensive. The application of CRS codes is particularly
widespread in modern communication systems, especially
in high-reliability areas such as mobile[3] communica-
tions, satellite communications, digital TV broadcasting,
and deep-space communication
In the encoding and decoding processes of RS codes, op-
erations such as multiplication, addition, and inversion are
involved. These operations entail nonlinear processes that
cannot be easily mapped onto standard integer or float-
ing-point operations. Specialized circuits, such as finite
field multipliers and inverters, are required, and the design
of these circuits is quite complex. Therefore, in hardware,
achieving high-speed computation often requires more
hardware resources, which leads to increased chip area
and power consumption. Conversely, reducing resource
usage can decrease operational speed. Hence, when it
comes to hardware-related aspects, the challenges posed
by RS codes become even more complex.
2.1.2 CRS code

The improvements in CRS coding mainly involve two
aspects. The first aspect is the use of an m*n Cauchy ma-
trix for encoding and decoding, replacing the traditional
Vandermonde matrix. Using The Cauchy matrix to replace
The Vandermonde matrix simplified the matrix multipli-
cation and inversion operations in the encoding and de-
coding process Since the elements of a Cauchy matrix are
simple fractions, the computation process is much simpler
than that of a Vandermonde matrix.
The second modification of CRS is to use projections that
convert the operations over GF(2^w) into XORs. CRS
codes use XOR operations to replace the original polyno-
mial calculations, and the algorithm has been optimized.
This is particularly important in cloud storage or distrib-
uted storage systems because it not only reduces data
processing time but also decreases the usage of system

resources, thereby enhancing the system‘s scalability and
performance. These work as follows.
Cauchy Reed-Solomon (CRS) codes in cloud storage sys-
tems consume less bandwidth and enable faster encoding
and decoding operations. By reducing the computational
complexity of encoding and decoding, CRS codes can
lower CPU and memory resource consumption on cloud
storage servers. The special structure of the Cauchy matrix
allows encoding and decoding operations to be performed
with lower computational complexity. This optimization
method is particularly effective when processing large-
scale data, significantly reducing system computational
overhead and enhancing overall system performance.
The performance of CRS codes in addressing data redun-
dancy and fault tolerance requirements in cloud storage. A
tiered storage strategy based on CRS codes can effectively
reduce the bandwidth requirements and recovery time of
cloud storage systems.[4]

3. Methods and Technical Models
3.1 RS code
RS code’s compilation process was based on a finite field,
For any q that satisfies the upper form,
the finite field GF(q)’s different structures are isomor-
phism. Thus, a finite field can be fully described accord-
ing to its size. The basic construction of the RS code is
the polynomial. Assume we have k information symbols,
denote as{ m m m m m0 1 2 2 1, , , , ,… t t− − } each of them is the el-
ement in the GF(q). These symbols can be used to form a
polynomial
 P x m m x m x m x() = + +…+ +0 1 2 1k k− −

k k− −2 1 (1)
The code word c can be formed by taking value of the
polynomial P(x) on different q places in
the GF(q)

 c c c C P p P= … = …(0 1 1, , , 0 , , ,q−) (() (α α) (q−1)) (2)

The Generator Matrix of the RS code is the VanderMent
matrix, every sub-matrix of the Generator Matrix is the
VanderMent matrix too, and the elements differ from each
other so the matrix is invertible. During the process of de-
coding, we can arbitrarily take k symbols of the (n,k)RS
code to solve the k variables.[5]

3.2 CRS code
The Cauchy matrix offers greater flexibility, with its
elements constructed from elements in a finite field, spe-
cifically over GF (2^w), where n+m≤2^w, CRS coding
allows for choosing w to be as small as possible, rath-
er than being restricted to 4, 8, or 16. Defie the sets X
= {x x1, ,… m} and Y = {y y1, ,… n} , where each xix_ixi and

2

Dean&Francis

yiy_iyi are distinct elements of the finite field (2^w), and
there is no intersection between X and Y (the elements
of X and Y do not overlap). For example, if w=3, then
GF(2^3) 2^3 = 8 elements. Therefore, the total number
of elements in X and Y, which is n + m, cannot exceed 8.
For instance, you could choose X={1,2} and Y={3,4,5},
where n+m=2+3=5. The element in the i-th row and j-th
column of the Cauchy matrix defined by X and 1/(xi + y j

). Compared to the original Vandermonde matrix, where
the elements in each row start from a specific base and
are then raised to increasing powers, the elements of a
Vandermonde matrix grow exponentially. Due to this
exponential nature, when the size of the Vandermonde

matrix is large, the computational complexity increases
significantly. In contrast, the elements of a Cauchy matrix
are in the form of simple fractions, which greatly reduces
computational complexity and improves the efficiency of
the computation.
The second method is to use XOR. As shown in Fig.1
Each element e of GF(2^w) may be represented by a 1 ×
w column vector of bits, V (e). This vector is equivalent
to the standard binary representation of the element. Each
element e of GF(2^w) may also be represented by a w ×
w matrix of bits, M(e), where the i-th column of M(e) is
equal to the column vector V(e2i−1)

Fig. 1: Vector and matrix representation of the elements of GF(2^3)
An important property of these projections is that us-
ing standard bit arithmetic addition is XOR, multi-
plication is bitwise-and, M e V e V e e(1 2 1 2)* and() = ()

M e M e(1 2)* () = M e e(1 2) As shown in Fig. 2, we can

obtain the multiplication answer.

Fig. 2: Illustrative Graphic Multiplication

Fig. 3: The RS coding converted to use bit arithmetic

3

Dean&Francis

As shown in Fig.3,If we want to get C1 we just need to
XOR the element
C D D D D D D D D1,1 1,1 2,1 2,2 3,3 4,1 4,2 4,3 5,2= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ (3)
Let o be the average number of ones per row in the dis-
tribution matrix. Then the number of XORs to produce a
word in each coding packet is equal to o − 1.For example,
in the distribution matrix of Figure 4, there are 47 ones.
Since there are six rows, o =47/6, and thus the average
number of XORs per coding word is o − 1 = 47/6 − 1 =
6.83. Compared to standard Reed-Solomon coding, where
each coding word would require 4 XORs plus 20 multipli-
cations over GF(2^8) [6]

3. Look up table in CRS code
A lookup table is a data structure that precomputes and
stores specific operations as function results. The lookup
table in digital circuits can improve the speed and effi-
ciency of the circuit.[7]The core idea is to store common
computational results in a table so that these results can
be directly retrieved when needed, without the need for
recalculation. This approach can break down a complex
problem into a combination of modular problems, allow-
ing you to directly utilize the necessary modules, thereby
reducing the overall complexity. In the encoding and
decoding process, many computational results need to be
reused, such as the elements of the Cauchy matrix, which
are used multiple times, as well as inversion operations.
Since these operations are often repeated, storing the re-
sults in a lookup table can significantly improve speed.[8]
In a Cauchy matrix, because each data block needs to be
multiplied by the corresponding row of the matrix to gen-

erate parity blocks, the data stored in the lookup table can
be repeatedly accessed and used to avoid performing the
same calculations each time. Additionally, during decod-
ing, especially when multiple lost data blocks need to be
recovered, the computation of inverse matrices may need
to be repeated. If these complex calculations were to be
repeated every time we use the data, it would consume a
significant amount of time. Therefore, by storing frequent-
ly used data in a lookup table, we can reduce the need to
recompute data, thereby further enhancing efficiency.
Embedded systems typically need to store data, including
operating systems, application code, configuration files,
log data, sensor data, and more. This data must be stored
in the storage devices within the embedded system. Em-
bedded systems often face strict resource constraints, such
as limited storage capacity, power consumption, and pro-
cessing power. Therefore, the storage system in an embed-
ded system needs to be optimized to ensure efficient use
of storage space and fast data access. Additionally, there
are strategies for designing efficient lookup tables within
embedded systems, particularly in environments where
memory resources are limited.[9]

4. Experiment and Model Evaluation
Simulate the process of generating a multiplication table
for Reed-Solomon (RS) codes and utilizing a lookup table
using C++ code. In the two programs, the only difference
is that in the first program, the lookup table function is
executed at the beginning, and the results are stored in a
lookup table, while in the RS code implementation, the
calculations are performed every time the data is needed.

Table.1: The time required for each method and the size of the data.
Data size
Method 1000000 10000000 100000000

Traditional Encoing 20616 229665 2185805
XOR Encoing 18222 185950 1777002
Look up Table 17863 185890 1653120

By using C++ to simulate the encoding process, we
can obtain the data needed for encoding, as shown in
Table.1. We can clearly see the time required for each
method. The data(1000000) approximately corresponds
to a medium-resolution JPEG image or a few seconds of
standard-definition video This single modification alone
makes the program noticeably faster. As the scale of data
increases, the gap between lookup tables combined with
CRS codes and traditional RS codes further widens. In
more complex encoding processes, there are numerous
repetitive operations. By pre-storing these results, we can

dramatically increase our efficiency, making the entire
system more effective and responsive.
In encoding there are also like Inversion Operations, Ma-
trix Computations, and In decoding it can significantly
accelerate error detection and correction during the decod-
ing process. Using lookup tables for these operations not
only reduces real-time computation complexity but also
enhances the overall speed of encoding and decoding. It
transforms complex problems into simpler steps that can
be handled individually. This modular approach allows for
more efficient processing and quicker resolution of com-

4

Dean&Francis

plex tasks.
Although a lookup table can improve computational ef-
ficiency, it requires additional storage space. We need to
trade off more storage space for better time efficiency and
consider the relationship between the implementation
complexity and performance improvement of CRS codes.
However, whether it significantly increases the size of
the data depends on the design and implementation of the
lookup table. Typically, a lookup table should only contain
the results that are frequently used during the encoding
and decoding processes, rather than all possible operation
results. The lookup table should prioritize storing the most
commonly used data, reducing the need for real-time cal-
culations of less frequently used data. In certain high-ef-
ficiency scenarios, such as cloud storage or streaming
media, faster storage is required to ensure the proper func-
tioning of the system. In environments that involve pro-
cessing large-scale data or require efficient encoding and
decoding, the advantages of a lookup table often outweigh
its storage space overhead, thereby achieving the desired
efficiency.
In addition to CRS, there are several optimization tech-
niques for RS codes, such as iterative algebraic geometry
algorithms (AG codes). These methods can correct errors
beyond the traditional error correction limits within poly-
nomial time, thereby enhancing the practical effectiveness
of RS codes.[10]

5. Conclusion
The study found that CRS codes, compared to traditional
RS codes, offer higher efficiency by reducing computa-
tional complexity in the encoding and decoding processes.
This is achieved through the use of XOR operations and
optimized matrix structures, which minimize computa-
tional overhead, making CRS codes particularly suitable
for large-scale storage solutions.
However, CRS still involves redundant operations like
multiplication and finding inverses. By storing these re-
sults in lookup tables, the process becomes more efficient,
although this increases data size. The development of the
metaverse and blockchain demands more efficient storage
systems, where sacrificing space for time efficiency is of-

ten worthwhile.
The development of the metaverse and blockchain has im-
posed higher demands on storage systems, particularly in
terms of data security, privacy, decentralization, and large-
scale storage. Cloud storage and other network services
also require more efficient storage solutions. When high
efficiency is necessary, the benefits of sacrificing space for
time efficiency can be significant.

References
[1] Plank, J. S. (2005). Optimizing Cauchy Reed-Solomon codes
for fault-tolerant storage applications (Technical Report CS-05-
569). Department of Computer Science, University of Tennessee.
[2] Wicker, S. B., & Bhargava, V. K. (1999). Reed-Solomon
Codes and Their Applications. John Wiley & Sons.
[3] Lin, S., & Costello, D. J. (2004). Parallel Architectures for
Fast Reed-Solomon Encoding and Decoding. IEEE Transactions
on Computers, 53(4), 487-495.
[4] Li, J., & Tang, Z. (2011). Cauchy Reed-Solomon Coding
for Cloud Storage Applications. IEEE Transactions on Cloud
Computing, 9(2), 345-355.
[6] Plank, J. S. (2005). Optimizing Cauchy Reed-Solomon codes
for fault-tolerant storage applications (Technical Report CS-05-
569). Department of Computer Science, University of Tennessee.
[5] Du, X. (2023, July 14). Performance analysis of several
common error correction codes. Paper presented at The 5th
International Conference on Computing and Data Science
(CONF-CDS 2023), Macau, China.
[7] Smith, R. J., & Brown, T. E. (2013). Using lookup tables in
digital circuits: Benefits and limitations. IEEE Transactions on
Circuits and Systems I: Regular Papers, 60(6), 1473-1485.
[8] Cheng, F., & Wu, J. (2017). Power-efficient lookup table
designs for energy-constrained systems. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 25(10), 2910-
2919.
[9] Nguyen, H., & Zhao, L. (2015). Memory-efficient lookup
table designs for embedded systems. Embedded Systems and
Applications Journal, 7(4), 210-221.
[10] Guruswami, V., & Sudan, M. (1999). Efficient Decoding
of Reed-Solomon Codes Beyond the Error-Correction Bound.
IEEE Transactions on Information Theory, 45(6), 1757-1767.

5

