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Abstract:
In this study, a method based on Genetic Algorithm and optimal control for path planning of an unmanned vehicle is 
proposed. This work discretizes the optimal control problem into a nonlinear programming problem and resolves it to 
enhance the initial answer. All physical quantities are incorporated as variables into the problem-solving process and 
limited by an objective function to derive the optimum trajectory.
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1. Introduction
Research on unmanned vehicle systems is vital not only 
for driving forward technological innovation but also for 
its profound influence on future transportation frame-
works. Guided by initiatives like China’s Intelligent Con-
nected Vehicle Development Action Plan and the Outline 
for the Construction of a Strong Transportation Nation, 
the integration of intelligent transportation has been firmly 
established as a cornerstone in China’s strategic planning. 
These policies foster the development of autonomous 
driving technologies, encouraging advancements in areas 
such as vehicle-to-infrastructure communication and smart 
infrastructure integration. The overall goal is to cultivate 
a supportive environment that accelerates the progress of 
unmanned vehicle systems, aligning with the objectives of 
modernization and sustainable growth.
By 2025, we expect to see some highly autonomous vehi-
cles enter commercial service, showcasing China’s ambi-
tion in the global technology race. This marks a significant 
step toward integrating unmanned vehicles into everyday 
life. At the same time, similar policies that are presented 
in the United States and Europe emphasize that the devel-
opment of autonomous vehicle technologies should be pri-
oritized. These policies promote innovation in technology 
while laying the groundwork for transportation systems in 
the future. Researches on unmanned vehicle systems en-
able us to follow the advancement of future transportation. 
This research on unmanned vehicle systems could address 
the congestion to some extent since unmanned vehicles 
could make the best decision under complex circumstanc-
es. Besides, the systems would consider the cost of fuels 
and this would decrease the carbon emission. This implies 

that research into unmanned systems not only contributes 
to addressing global challenges like resource depletion 
but also achieves the aim of sustainability. Ultimately, 
research in this field could promote technological innova-
tion and create new opportunities for future living and the 
sustainable growth of our planet.
Research on unmanned vehicles will undoubtedly help 
mankind in the future. There are three primary modules of 
the unmanned vehicle system which are perception, plan-
ning, and control. These modules collaborate to ensure the 
safety and efficiency of vehicles.
Various sensors equipped in the perception module would 
collect and interpret data from the surrounding environ-
ment by monitoring road conditions and tracking the 
movements of other road users. These collected data en-
able the system to avoid potential risks by analyzing the 
information within it. The planning module plays a central 
role by integrating sensor inputs with mission objectives, 
traffic rules, and road conditions. It produced a safe and 
effective driving route that takes the vehicle dynamics into 
account. This module connects the perception and control 
modules by receiving information from sensors and then 
sending the ideal path to the control module. It is the vital 
factor that affects the consistency of the system. A good 
planning module could help unmanned vehicles to have 
a good performance when auto driving. Ultimately, the 
control module will precisely regulate the vehicle’s move-
ments according to the route outlined by the planning 
module. The control module is responsible for adjusting 
the steering, braking, and acceleration of the vehicle to 
maintain its position on the predefined path. Concurrently, 
the module modifies the control according to the sur-
rounding dynamic environment, thereby ensuring the se-
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cure operation of the vehicle. This is because the planning 
module that stands between sense and control modules 
connects these two. It not only processes the data but also 
turns it into actionable commands. The planning module 
determines how well the vehicle drives.
There are two types of planning systems. Single Vehicle 
Planning systems, Multi-Vehicle Planning systems. Sin-
gle-vehicle planning systems allow individual cars to nav-
igate autonomously using sophisticated decision-making 
algorithms that guarantee safe and efficient movement in 
more complex scenarios. Further, a single vehicle plan-
ning system can bypass dynamic obstacles on the way. 
The multi-vehicle planning system extends this to be 
multi-agent-capable, planning an entire vehicle trajectory 
on individual vehicles and ensuring collision avoidance 
among all autonomous vehicles It is the single-vehicle 
planning system fundamental to the multi-vehicle plan-
ning system. However, outages in the single-vehicle 
scheduling system are leaking energy for proper operation 
of a multi-vehicle scheduling system. The reason is that 
the multi-vehicle planning system requires unmanned 
vehicles to independently achieve accurate judgment in 
making plans. A single-vehicle planning system is needed 
to provide the safety of the vehicle in autonomous opera-
tion (it is a necessary condition for collaborative multi-ve-
hicle planning). Hence, it requires a detailed study. Five 
main techniques have been used in trajectory planning for 
unmanned vehicles cycle using the literature review graph 
theory, optimization, sampling, reinforcement learning, 
and heuristics are the main solutions currently adopted. 
One of them, Vehicle Trajectory Prediction Based on 
Graph Convolutional Networks in Connected Vehicle En-
vironment [1], describes a trajectory prediction model us-
ing graph convolutional networks (GCNs) in a connected 
vehicle environment. The method constructs spatial and 
temporal graphs and extracts interaction features using 
GCNs. The method improves the prediction accuracy by 
8% compared to existing models and proves its effec-
tiveness in complex traffic scenarios (MDPI). Intelligent 
Vehicle Path Planning Based on Optimized A* Algorithm 
[2] focuses on the improvement of the A* algorithm for 
dynamic environments for real-time path planning in 
dynamic environments. The improved A* can effectively 
handle obstacles and traffic flow, and achieve faster com-
putation speed and smoother trajectories.
Sampling methods would generate paths by randomly 
sampling spatial points. These methods such as RRT are 
often used in complex planning issues. The article ‘HPO-
RRT: A Sampling-Based Algorithm for UAV Real-Time 
Path Planning in Dynamic Environments’ [3] points out a 
time-based fast exploration random tree (time-based RRT 
*) algorithm is proposed, which solves the difficulty of 

trajectory planning when facing the moving threat, and 
enables it to quickly identify the moving object. Another 
article Dynamic path planning based on the fusion of im-
proved RRT and DWA algorithms[4]Proposed to combine 
the advantages of both by combining RRT and DWA al-
gorithms. It enables efficient trajectory planning for un-
manned vehicles and can avoid unknown obstacles.
The Reinforcement learning approach is a method for 
learning and reinforcement trajectory planning strategies 
by interacting with the surroundings. This method means 
that driverless cars can make more suitable trajectory 
planning in a complex and dynamic environment. The ar-
ticle Reinforcement-Learning-Based Trajectory Learning 
in Frenet Frame for Autonomous Driving [5] proposes a 
trajectory learning (RLTF) based on reinforcement learn-
ing in the Frenet framework, which involves learning the 
trajectory in the Frenet framework. This enhances the 
interpretability of the planned trajectory. Finally, the ex-
periment proves the feasibility of the method in the face 
of complex routes such as continuous detours. Another 
article, Deep Reinforcement Learning Lane-Changing 
Decision Algorithm for Intelligent Vehicles Combining 
LSTM Trajectory Prediction[6], proposed an algorithm, 
The algorithm utilizes deep deterministic policy gradient 
(DDPG) reinforcement learning, It is also integrated with 
long-term and short-term memory (LSTM) trajectory pre-
diction model (called LSTM-DDPG). This greatly solves 
the problem of driverless cars changing lanes when there 
are cars around them.
The way to generate paths quickly through empirical 
rules and heuristic functions is the heuristic method. This 
method can ensure safe and effective trajectory planning 
in a simple environment. Intersection management for 
autonomous vehicles: a heuristic approach[7] proposes a 
heuristic method to conduct the management of unmanned 
vehicle traffic intersections, which can achieve efficient 
traffic at traffic intersections and avoid traffic jams. At the 
same time, the improved heuristic Bi-RRT algorithm is 
proposed to accelerate the path planning and minimize 
the redundant path points, which makes the path more re-
laxed.
Optimization-based methods using mathematical optimi-
zation techniques. This method can satisfy both safety and 
dynamic constraints while ensuring the planned trajectory 
optimization objective functions such as time or energy 
consumption. Spatio-Temporal Joint Optimization-Based 
Trajectory Planning Method for Autonomous Vehicles in 
Complex Urban Environments[8] introduces multi-con-
straint-based co-optimized trajectory planning (SJOTP) 
for complex urban environments. This method compre-
hensively considers obstacles and automobile motion 
models, jointly optimizes multi-constraints and multi-tar-
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gets, and finally realizes fast and accurate path planning in 
complex urban environments.
In addressing an Optimal Control Problem (OCP), par-
ticularly in complex nonlinear systems, the choice of an 
initial solution is a determining factor in the success of the 
optimization process. Choices of initial solutions properly 
can help to improve the computational efficiency of solu-
tions and lead to quicker convergence. At the same time, 
an ideal step-0 solution will also give you some proxy of 
how good is your end solution going to be. If you pick 
a bad initial solution, the algorithm may be trapped in a 
local minimum. This can slow down the eventual con-
vergence, and you may never even find a proper solution. 
Through the study on how more optimal to formulate the 
initial solutions, this chapter considers here how different 
metrics of performance may eventually resolve in OCP 
situations.
To apply the result of this research in practice, an un-
manned vehicle is modeled by the Kinematic Bicycle 
Model (KBM). We use KBM because it is a well-known 
vehicle dynamic model for lower speeds and this makes it 
easier to replace these tools with those in autonomous ve-
hicle analysis. Furthermore, a simple shaped model (KBM) 
is widely applied in trajectory planning under collision 
avoidance requirements. To inform that initial estimate, 
the VA must consider key physical factors —velocity, 
steering angles, and acceleration. Although this makes it 
a perfect base for optimization, also means faster conver-
gence to globally optimal solutions in terms of computing 
efficiency.

2. Construction based on OCP prob-
lems
To achieve the study of trajectory, it is particularly attrac-
tive to implement optimal control problem (OCP) within 
single-vehicle trajectory planning due to employing multi-
ple methodologies like global/ off-the-shelf optimization, 
multi-objective optimization (MOO), and complex con-
straints formulation. Path planning settingThe incorpora-
tion of optimal control problem (OCP) into the path plan-
ning framework improves the planning process so that it 
can search for some kind of optimal solution considering 
diverse operational and physical constraints. With this 
approach, we can optimize different objectives in parallel 
(for example: path length, energy, and smoothness of the 
path) This compendium of goals represents the best path 
forward for accelerating autonomous vehicles to efficient 
and comfortable operation. Moreover, employing OCP for 
this objective facilitates the integration of a broader spec-
trum of physical limitations, including speed limits and 
turning radii, thereby ensuring that the generated trajecto-

ries are suitable for practical use. The OCP is an essential 
instrument for complex trajectory planning of autonomous 
vehicles, effectively merging theoretical limitations with 
practical adaptability.

2.1 Simple Bicycle Model
The Simple Bicycle Model is often used to represent 
the kinematics of unmanned vehicles when researching 
self-driving vehicles (CAVs). There are many quantities in 
KBM to be explained and studied.
This simple bicycle model is a model which can simulate 
the motion of unmanned vehicles in two dimensions. This 
model could illustrate the vehicle’s position, velocity, 
and steering. Firstly, equations  x t v t cos t( ) = ( ) (θ ( ))  

and  y t v t sin t( ) = ( ) (θ ( )) describe the velocity com-
ponents of the vehicle in the x- and y-axis directions, 
respectively. These two components are determined by 
the velocity of car v(t) and vehicle orientation angle θ(t). 
Vehicle orientation angle θ(t) Indicates the direction 
of the vehicle relative to the x-axis. The third equation 

θ φ(t tan t) = v t
L
(
ω
) ( ( ))  describes the steering speed of the 

vehicle, which is the result of the combination of the vehi-
cle speed v(t), the axle distance Lω  (i.e., the distance be-
tween the front wheels and the rear wheels), and the steer-
ing angle ϕ(t), where ϕ(t) expresses the degree of steering 
through its tangent. Together, these equations determine 
how freely the vehicle moves and steers in a space with 
no external constraints.

Fig. 1 Figure of simple bicycle model
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2.2 Optimal control problems
In optimal control problems (OCPs), minimizing energy 
consumption is frequently identified as a pivotal per-
formance metric, particularly in the context of dynamic 
planning for self-driving vehicles (CAVs). In this context, 
the energy consumption is typically represented by the 
sum of the squares of the acceleration a(t) and the steering 
angular velocity ω(t). The acceleration squared reflects the 
energy consumed by the vehicle due to speed changes. Its 
squared form ensures a positive energy consumption and 
imposes a greater limit on high acceleration by squaring. 
This motivates the algorithm to look for smoother speed 
trajectories, which improves energy efficiency and ride 
comfort. The squaring of the steering angular velocity, on 
the other hand, accounts for the energy expenditure asso-
ciated with steering maneuvers and reduces the frequency 
and intensity of steering inputs, thereby enhancing vehicle 
ride stability and safety. The objective function combines 
these two factors to achieve an optimal solution that bal-
ances the relationship between speed, energy consump-
tion, ride comfort, and safety. This is done by adjusting 
the corresponding weighting coefficients to ensure that 
the autonomous driving system achieves efficient use of 
energy while maintaining responsiveness and smooth op-
eration.

2.3 Constraints
In the context of optimal control problems (OCPs), prev-
alence constraints are employed to guarantee that the 
behavior of self-driving vehicles (CAVs) adheres to the 
prescribed physical laws and operational constraints, 
including speed limits and steering angle limits. These 
constraints are the key factors to guarantee the vehicle 
operates safely and practically when facing complex con-
ditions. The speed constraint 0 ≤ vi(t) ≤ v max implies 
that the vehicle’s speed should not exceed the maximum 
speed limit. This way the possibility of accidents caused 
by high speed would be decreased. The steering angle 
constraint φi t( )  ≤ φmax ensures that the vehicle’s steer-
ing angle will not be too large to lose control while pass-
ing obstacles. The above constraints not only help to more 
accurately simulate the behaviors of real vehicles, but also 
help to ensure the safety and feasibility of the planned 
paths of the unmanned vehicle system. This allows the 
vehicle trajectory to be more practical while adhering to 
safety guidelines for comfortable and efficient driving.

2.4 conclusion
All the equations are listed below
x t v t cos t( ) = ( ) (θ ( ))

y t v t sin t( ) = ( ) (θ ( ))

θ φ(t tan t) = v t
L
(
ω
) ( ( ))

0≤vi(t)≤vmax0
φi t( )  ≤ φmax

3. OCP problem-solving and initial 
solution construction
3.1 Discrete
Most often converting a continuous time dynamic system 
to a discrete-time model is needed when tackling optimum 
control problems (OCP). In this work, we employed inter-
polation to discretize the initial solution into 50 x-y points 
and reduced a complex trajectory issue to a 1D optimiza-
tion. By formulating the trajectory planning problem as 
a finite-dimensional optimization, the original issue with 
an infinite number of dimensions is greatly simplified and 
hence the solution accuracy is improved. This approach 
picks a time step and derives the discretization from it. 
The original continuous solution is discretized by uniform 
interpolation, and the obtained values get fed into the 
physical model to calculate the steering angle together 
with other needed physical quantities for real-world use. 
Furthermore, limitations on  energy consumption and 
vehicle kinematics are incorporated to enhance the real-
ism and efficiency of the vehicle trajectory. This discrete 
method facilitates precise trajectory planning for practical 
applications and enhances answers to intricate optimal 
control problems.

3.2 Construction of the initial solution
The transformation of a complex trajectory planning issue 
into a nonlinear programming (NLP) problem is a crucial 
step in solving an optimum control problem (OCP). This 
will convert a dynamical system optimization into a nu-
merical optimization of the objective function, significant-
ly simplifying the task. The initial solution will then be 
optimized using interior point optimization techniques. An 
appropriate initial solution can enhance algorithm conver-
gence and reduce the likelihood of local optimality. This 
approach reduces the amount of time required to produce 
the solution and provides a faster overall better answer. 
After you have an initial solution, it is common to use 
gradient-based methods to improve the solution using gra-
dient descent. This process helps to improve the efficiency 
and consistency of the solution according to the given log-
ic & requirements. A good initial solution is necessary for 
optimal path-finding; the better the original solution, the 
more likely that using this algorithm will find an optimal 
solution. More importantly, the preliminary answer should 
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respect constraints such as maximum speed, comfort, and 
energy usage. By doing so, the degrees of freedom are 
constrained. Also, it allows us to build up a more efficient 
and practical realization of the first solution under real 
driving conditions.

3.3 Method for solving the initial solution
The effectiveness of the initial solution is crucial in opti-
mal solution control problem, since it directly influences 
the speed and quality of the final solution. Several meth-
ods, such as A* search, heuristics, and dynamic program-
ming (DP), are commonly utilized to obtain an optimal 
initial solution.
A* search is a graph search algorithm that determines 
the ideal path by assessing the function f(n). In this equa-
tion, f(n) equals g(n) plus h(n), where g(n) denotes the 
actual cost function from the initial point to node n, and 
h(n) signifies the predicted cost function for the remain-
ing distance. This strategy is predominantly efficient, as 
it integrates actual and predicted expenses. Conversely, 
heuristics provide an efficient search utilizing accumulat-
ed knowledge and experience, thereby enabling the rapid 
attainment of a solution. It is important to note, however, 
that heuristics are not guaranteed to perform perfectly in 
extremely complex systems and may not even identify the 
global optimal solution. In contrast, dynamic methods rep-
resent the most commonly utilized strategy, wherein the 
problem is decentralized to each stage and solved sequen-
tially before the solutions are integrated. This circumvents 
the issue of failing to identify the global optimal solution. 
ALL approaches can be highly effective depending on 
the complexity of the problem and the computational 
resources available. However, they can rapidly provide a 
feasible solution and are frequently employed in the initial 
exploration of complex problems. Dynamic programming 
is a method that employs the decomposition of problems 
into sub-problems to solve complex problems. This is 

achieved by recursively solving each sub-problem and 
storing the results of solved sub-problems, thus avoiding 
repeated computations and effectively finding the glob-
al optimal solution. Each of these three methods has its 
advantages and limitations. The choice of which method 
to use depends on the nature of the specific problem, the 
quality requirements of the solution, and the limitations of 
computational resources. In practice, these methods can 
be used individually or in combination to improve solu-
tion efficiency and solution quality.

4. Initial solution construction based 
on the genetic algorithm and the solv-
ing of the OCP problem
4.1 Solving the steps of the genetic algorithm
In the Genetic Algorithm (GA) based path planning 
solution, a multitude of pivotal parameters have been 
established with the objective of to emulate the authentic 
scenario, thereby rendering the preliminary solution more 
realistic. In the genetic algorithm (GA), the population 
size is set to 100. This configuration guarantees the con-
veyance of diversity, thereby facilitating a more compre-
hensive examination of potential paths and ultimately 
leading to a more complete path solution. The algorithm is 
run for up to 200 generations, which balances the compu-
tational resources and ensures that there are sufficient evo-
lutionary processes to optimize the initial solution. Each 
chromosome in the population encodes a sequence of 40 
kinematic variables, which are used to produce coordinate 
values (x, y) corresponding to the two-dimensional plane.
The fitness function is the catalyst for the evolutionary 
algorithm, aiming to minimize the Euclidean distance be-
tween the final path point and the target destination. This 
promotes the solution’s proximity to the target endpoint, 
aligning with the algorithm’s goal of accurate pathfinding.
The concluding phase of the process involves incorporat-
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ing a constraint into the evolutionary algorithm, so fulfill-
ing the goal of obstacle avoidance. The constraint verifies 
if the path’s points intersect with the circular obstacle set. 
In the case of a junction, the obstruction is navigated by 
imposing a more severe penalty for such an occurrence.

4.2 Initial solution results of the genetic algo-
rithm

Fig. 2 The path generated by Genetic Algorithm
The image illustrates the outcome of a path-planning 
exercise that employed a genetic algorithm. The image 
depicts a grid with a blue path that begins at the bottom 
left and terminates at the top right. This path effectively 
circumvents a substantial red circular obstacle. The path 
successfully circumvents the obstacle by deviating sig-
nificantly from its trajectory, thereby demonstrating that 
the algorithm is capable of respecting the imposed spatial 
constraints.
It seems reasonable to posit that the start point is situated 
in the lower left quadrant of the grid, while the endpoint is 
located in the upper right quadrant.
The coordinates of the obstacle center are approximately 
(5.5, 5.5) on the grid, with an obstacle radius of approx-

imately 2 units. This positioning necessitates a detour 
around the obstacle to reach the destination.
The genetic algorithm employs a population size of 100, 
which indicates a robust search through the path space. 
The algorithm operates over a maximum of 200 genera-
tions, allowing the solution to refine and converge towards 
an optimal path.
Each member of the population encodes a sequence of steps 
in the path, represented by 40 genes (20 pairs of x and y in-
crements), providing the necessary granularity to navigate 
complex routes, such as those involving the avoidance of ob-
stacles. The plot visually confirms that the algorithm’s con-
figuration—specifically the balance of exploration (via popu-
lation size and mutation) and exploitation (through selection 
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and crossover)—is effectively tailored to solve the problem 
of navigating through constrained environments without vio-
lating defined boundaries.

4.3 Discrete of initial solutions of the GA
The process of interpolation and discretization is applied 
to a set of initial coordinate data extracted from a Com-
ma-Separated Values file. The process begins with the 
loading of the raw x and y coordinates using NumPy’s 
`genfromtxt` function, which reads data from the file 
while skipping the header and focusing on the first two 
columns. Subsequently, cubic spline interpolation is 
employed through SciPy’s `interp1d` function, which is 
defined for both x and y coordinates over a normalized 
domain from 0 to 1. This interpolation is based on the 
original data points, which are resampled to create a dens-
er and smoother sequence of 50 new data points spanning 
the same range. This densification permits a more exact 
calculation of derivatives and angular changes in sub-
sequent stages of the analysis, effectively transforming 
sparse coordinate data into a more continuous and usable 
form for further motion analysis and physical quantity 

calculations.

4.4 Construction of the OCP problem
One hundred pairs of corresponding x and y values were 
derived after discretizing the initial solution produced 
by the genetic algorithm. The vehicle’s steering angle, 
together with variable parameters such as acceleration 
and angular velocity, can be derived from the equations 
of the simple bicycle model with one hundred discretized 
coordinate sets. The discretized data for each physical 
quantity can be acquired and incorporated as variables 
into the solution. Acceleration (a) and rotational velocity 
(w), indicative of comfort and energy consumption, serve 
as objective functions, while constraints, including the rel-
evant physical vehicle model, enhance the realism of the 
resultant path. By aggregating all physical quantities as 
variables within the solver and subsequently constraining 
them through the objective function and limitations, the 
approach can provide a more refined trajectory based on 
the initial solution. This more even route conserves great-
er energy.

Fig. 3 Figure of the initial path and optimized path
This figure illustrates the preliminary solution and the 
refined trajectory. The preliminary solution, depicted by 
the blue segment, exhibits rapid steering throughout the 
motion, evidenced by pronounced fluctuations and steer-

ing along the x- and y-axes. These situations indicate that 
the path is devoid of constraints or limitations. Converse-
ly, the optimal path depicted by the red line exhibits a 
remarkably smooth trajectory, devoid of abrupt variations 
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and steering maneuvers. This results from the vehicle’s 
operational limitations, which are designed to maximize 

path optimization by utilizing energy consumption and 
comfort as target functions.

Fig. 4 Figure of the steering rate over time

Fig. 5 Figure of the acceleration over time
The two plots illustrate the variations in acceleration and 
steering rate over time, respectively. The initial graph 
indicates that the vehicle experiences quick acceleration, 
increasing from approximately 0 to almost 1 m/s², due to 
the initial speed being established at 1 m/s². Subsequently, 
the analysis of the images indicates that the vehicle grad-
ually accelerates with a very uniform increase in speed. 
This technique entails that during optimization, the sys-
tem regulates the vehicle’s speed by gradual acceleration, 
so preventing abrupt accelerations that could discomfort 

the occupants. Simultaneously, energy consumption, as 
a function of the square of the acceleration, is minimized 
while maintaining a constant acceleration. The second 
graph illustrates the variation in steering rate, which de-
creases from nearly 0 to -0.175 rad/s and thereafter as-
cends back to 0. This indicates that the vehicle reverts to 
a nearly straight trajectory following a gentle turn. This 
minimizes the pain experienced by passengers during 
sharp turns, significantly enhancing overall comfort. The 
optimization method efficiently regulates variations in ac-
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celeration and steering rate, guaranteeing a fluid and agile 
vehicle trajectory.

5. Conclusion
This work proposes a path-planning strategy for un-
manned vehicles utilizing optimal control problem model-
ing. The computational optimal control problem is trans-
formed into a nonlinear planning problem and resolved. 
The findings indicate that the selection of the first solu-
tion significantly affects computing efficiency and path 
smoothness. This strategy optimizes the course within the 
restrictions of the objective function, greatly diminishing 
rapid acceleration and sharp curves, enhancing energy 
efficiency, and improving ride comfort. Moreover, the 
implementation of physical constraints (e.g., velocity and 
steering angle limitations) guarantees that the produced 
trajectories are practical and secure for real-world applica-
tions.
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