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Abstract:
The propensity score refers to the likelihood of a subject being selected for intervention, given their observed baseline 
covariates. By assigning different weights to academic disciplines based on the reciprocal probability of receiving 
treatment, there will be a synthetic sample where the assignment of treatment is not influenced by baseline factors 
that were measured. Utilizing inverse probability of treatment weighting (IPTW) through the propensity score enables 
people to assemble unbiased or objective estimates regarding average treatment effects. In order to estimate the causal 
relationship between an exposure and an outcome, the second notion of doubly robust estimation combines an outcome 
regression with a propensity score model. Only when the statistical model is appropriately stated can unbiased estimates 
be obtained using the propensity score approach and outcome regression separately. However, even if only one of 
the two models is correctly specified, an unbiased estimator for the effect can be obtained by employing the doubly 
robust estimator. This introduction to inverse probability of treatment weighting and doubly robust estimators includes 
conceptual overviews, an application to students’ performance in high school, as well as discussions based on the 
project.
Keywords: Average treatment effect; inverse probability of treatment weighting; doubly robust; causal 
inference.

1. Introduction
Observational data provides ample opportunities to ex-
plore the impact of exposure, for instance, when examin-
ing the comparative efficacy and security of various ther-
apies. Therefore, the utilization of observational studies 
is becoming increasingly prevalent among researchers 
for the estimation of the effect of interventions, expo-
sures, and therapies on the resultant health. The effects 
of exposure or causality can be expressed using potential 
outcomes within Rubin’s framework for causal modeling 
[1]. In the presence of two mutually exclusive exposures 
within a specific time interval, patients possess a set of 
potential outcomes, with each exposure corresponding to 
an outcome. However, in reality, patients are allocated to 
only one exposure, resulting in the observation of only 
one potential outcome. In this instance, a contrast (such an 
absolute discrepancy) between the possible results under 
each exposure might be used to characterize the causative 
impact for this patient. The average causal effect (ACE) is 
then calculated by averaging these differences across all 

patients in a relevant population. Given the existence of a 
single possible outcome in actuality, it presents difficulties 
to directly assess the causal impact at an individual patient 
level. Therefore, most studies focus on estimating ACE 
instead. Interestingly, ACE can also be defined without 
explicitly considering individual-level causal effects. For 
instance, when dealing with binary outcomes, risk differ-
ences or ratios may serve as alternative measures of ACE.
In randomized controlled trials, the process of random-
ization guarantees that there are no systematic differences 
comparing the measured and unmeasured baseline charac-
teristics of treated and control participants. This ensures a 
dependable foundation for assessing the efficacy of inter-
ventions. However, in non-randomized studies, the pres-
ence of treatment-selection bias may arise due to system-
atic variations between control and treatment participants. 
Consequently, estimating the effect of treatment solely via 
contrasting the results of treatment groups is not feasible.
Propensity score techniques are being utilized more fre-
quently to estimate treatment effects from observational 
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data. The propensity score is defined as the probability of 
treatment assignment conditional on measured baseline 
covariates [2-4]. Rosenbaum and Rubin showcased a key 
attribute of the propensity score: when provided with the 
propensity score, treatment status becomes uncorrelated 
with measured baseline covariates [2]. Therefore, the pro-
pensity score acts as an equalizing measure, ensuring that 
participants in treatment and control possessing identical 
propensity scores display similar distributions of baseline 
factors that were observed.
There are four different approaches discussed in the statis-
tical literature for utilizing the propensity score: covariate 
adjustment using the propensity score, stratification or 
subclassification on the propensity score, matching on 
the propensity score, and inverse probability of treatment 
weighting (IPTW) [2, 5]. Rubin suggested that propensity 
score techniques offer the benefit of enabling observation-
al research to be structured in a manner similar to random-
ized experiments. This approach allows for the separation 
of study design from the analysis of exposure’s impact on 
the outcome [6].
Moreover, Robins and colleagues introduced the concept 
of doubly robust estimators (DR) that necessitate a model 
for estimating both the propensity score and the outcome 
model within the same estimator. The benefit of these esti-
mators is that they provide researchers two chances to get 
accurate findings since they provide unbiased estimates of 
treatment effects even in cases when only one or both of 
these constituent models are accurately described [7].
This study introduces a more accurate and resilient ap-
proach for inferring causality from observational data, 
along with a novel analytical instrument for researchers in 
relevant fields. This will not only improve the comprehen-
sion of particular treatment impacts but also foster prog-
ress in social science and medical research.

2. Estimators
2.1 Framework and Average Treatment Ef-
fects
Considering a scenario where there exists a choice be-
tween two alternatives and the existence of two poten-
tial treatments is assumed. (e.g., active treatment versus 
control treatment). Within the framework of potential 
outcomes, it is postulated that each individual possesses a 
pair of potential outcomes: Yi (0)  and Yi (1 ,)  representing 
the outcomes under the control treatment and the active 
treatment, respectively, when administered in identical 
circumstances. Nevertheless, the assignment of treat-
ment is dichotomous, where each participant is randomly 
assigned to either the control group or the active treat-

ment group. Let Yi (1)  and Yi (0) denote the hypothetical 
posttest outcomes for the treatment and control groups 
respectively. For each subject, the effect of treatment is 
defined as Y Yi i(1 0) − ( ) : the difference between the two 
potential outcomes. The actual observation of these out-
comes totally dependent upon the treatment variable Zi

, such that Y Z Y Z Yi i i i i= + −(1 (1 ) 0) ( ) , where Yi  represents 
the observed continuous posttest outcome variable. The 
Xi vector includes all initial variables, encompassing the 
measurement of the outcome before the test. The average 
treatment effect (ATE) is defined to be: E Y Y[ (1) (0)]i i− , 
with the expectation taken across the population of inter-
est [8]. The ATE represents the mean impact, on a popula-
tion-wide scale, of transitioning a complete populace from 
the control group to the treated group. The average causal 
inference in this context is τ = −E Y X E Y X( (1) | ) ( 0 | )i i i i( ) .

2.2 IPTW Estimator
The propensity score, which indicates the probability of 
receiving treatment depending on the characteristics of 
the individuals, is the basis for all of the computations 
shown in this section, i.e. P Z X( 1| )i i= . To generate the 
inverse probability of treatment weighting, the estimated 

propensity scores (pi )  are utilized by applying weighting 

techniques. These scores are estimated values that come 
from a probit or logistic model.

By applying inverse weights of 1/ (pi )  when Zi  equals 

1, or 1/ (1 )− pi  when Zi equals 0, the IPTW estimator can 
be derived.
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However, if the model is misspecified, then the weighting 
will be inappropriate and the IPTW estimator may be bi-
ased [9].

2.3 DR Estimator
Compared with doubly robust (DR) estimator, the IPTW 
estimators are part of a group of unbiased estimation 
methods. By removing any term with an expected value 
of zero from the estimation equation, unbiased estimates 
could still be obtained. This extra term can be utilized to 
enhance the efficiency of the estimators and safeguard 
against model misrepresentation. The most efficient es-
timator in this category is known as the semiparametric 
efficient estimator, which is demonstrated to be the doubly 
robust estimator.
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Lunceford and Davidian provide the formula for a dou-
ble-robust estimation [8]:
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where m X E Y Z Z XZ i i i i= =( | , ) for Z = 0 or Z =1 , i.e., 

these predicted values are derived from separate regres-
sions conducted for each group, using the same model. 
The regressions include baseline covariates and the initial 
outcome measure to estimate coefficient values and gener-
ate predicted outcomes [10].
The doubly robust estimator becomes the semi-parametric 
efficient estimator when both models are well-specified. 
In the case of a correct exposure model, the double-robust 
estimator demonstrates reduced variance compared to 
the IPTW estimator. On the contrary, in case the outcome 
model is precise, it demonstrates increased variability 
compared to the standard regression model. Nevertheless, 
it offers safeguard against potential misrepresentation in 
this specific model. If both exposure and outcome models 

are misspecified, then resulting estimates may be biased. 
Notably, because they depend on these models, other 
techniques like regression or IPTW would likewise show 
same bias.

3. Methods
3.1 Data Source
The dataset used in this study consists of information 
from 2,392 students, including details of learning habits 
and academic achievements (Table 1). This study aims to 
examine the correlation between academic performance of 
high school students and their engagement in extracurricu-
lar activities, utilizing the provided dataset. The treatment 
group, also known as the independent variable, refers to 
the involvement of students in extracurricular activities(Z) 
(mean= 0.38; standard deviation,0.49). The dependent 
variable centers around students’ GPA(Y) (mean= 1.91; 
standard deviation, 0.91) as an indicator of their academic 
performance. Furthermore, the covariate considers the 
age(X) (mean= 16.5; standard deviation, 1.12) among 
students. (The Kaggle website offers specifics on the data 
generation procedure.)

Table 1. Lists of Variables
Variable Logogram Meaning

Age X The age of the high school students.

Extracurricular Z A binary variable indicating whether the student participates in extracurricular activities (1 
for yes, 0 for no).

GPA Y The GPA of the student, which represents their academic performance.

3.2 Application
Calculating Propensity Scores: The project will utilize 
a logistic regression model to determine the propensity 
scores of students, where Extracurricular (Z) is considered 
as the response variable and Age (X) as the predictor vari-
able. This step aims to estimate the predicted probability 
of participating in extracurricular activities based on a stu-
dent’s age. Figure 1 is a histogram about propensity score.

Fig. 1 Histogram of Propensity Scores
Calculating ATE using IPTW and DR Methods: In the 
IPTW approach, propensity scores are utilized to assign 
weights to individual observations within the regression 
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command. These assigned weights facilitate the adjust-
ment of observed outcomes, enabling estimation of the 
Average Treatment Effect. The Doubly Robust approach 
utilizes both a propensity score model and an outcome re-
gression (logistic regression) model to estimate the Aver-
age Treatment Effect, ensuring a more resilient estimation 
even in cases of potential misspecification in either of the 
models.

4. Results and Discussion
4.1 ATE Estimation
IPTW Method: The estimated ATE obtained through 
IPTW approach was 2.277, suggesting that engagement in 
extracurricular pursuits is linked to an average GPA incre-
ment of 2.277.
DR Method: The estimated ATE obtained through DR 
approach was 3.854, suggesting that engagement in extra-
curricular pursuits is linked to an average GPA increment 
of 3.854.

4.2 Data Analysis
The figure (Figure 2) presented below demonstrate the 

comparison of ATE estimates using various approaches: 
unadjusted, IPTW and DR. The unadjusted approach fails 
to consider potential confounding factors, whereas IPTW 
and DR approaches incorporate the covariate (age) in 
order to enhance the precision of estimating the causal ef-
fect. Furthermore, boxplots (Figure 3) are included to vi-
sually represent the distribution of GPA among treatment 
groups following adjustment.

Fig. 2 Comparison of ATE Estimates

Fig. 3 Comparison of GPA
4.3 Discussion
The histogram reveals a reasonably equitable dispersion 
of propensity scores, indicating the presence of diversity 
in the probability of engagement in extracurricular activi-
ties among distinct age cohorts.
When it comes to comparison of ATE, the unadjusted ATE 
is found to be lower compared to both the IPTW and DR 
estimates, indicating that not considering factors like age 

may result in underestimating the impact of extracurricu-
lar activities on GPA. It is worth noting that utilizing the 
DR method, which incorporates propensity score and out-
come models, produces the highest ATE estimate, suggest-
ing a strong positive influence of extracurricular activities.
Moreover, the unadjusted GPA boxplot indicates a notice-
able difference between students involved in extracurric-
ular activities and those who are not. However, the gap 
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becomes more prominent in the DR-adjusted GPA distri-
bution, thereby reinforcing the conclusion that engage-
ment in extracurricular activities has a positive impact on 
academic performance when considering age.
Suggested approaches for tackling this phenomenon are 
presented herein. Encouraging diverse involvement in ex-
tracurricular pursuits is crucial due to empirical evidence 
indicating a noteworthy positive link between students’ 
engagement in these activities and their academic success. 
Education policymakers and school administrators should 
prioritize promoting such involvement as it not only en-
hances scholastic accomplishments but also fosters com-
prehensive growth.
The analysis of this study is subject to certain limitations. 
Although efforts have been made to improve the infer-
ence of causal relationships through methodologies in 
the project, it is important to acknowledge the presence 
of potential confounding factors, such as study habits, or 
parental involvement, that could influence the association 
between extracurricular activities and GPA. Future studies 
may consider employing more sophisticated statistical 
techniques or experimental designs in order to further val-
idate this relationship. Furthermore, it is important to note 
that the sample used in this study may not fully represent 
the entire population of high school students. As a result, 
there is a possibility that the research findings may have 
limited applicability. To improve the generalizability and 
relevance of these results, future investigations could be 
conducted across various geographical regions and diverse 
educational institutions.

5. Conclusion
The data unequivocally shows that there is a substantial 
and direct correlation between students’ GPA and extra-
curricular activity involvement. By utilizing IPTW and 
DR estimators, the study confirms the significance of the 
relationship between extracurricular activity involvement 
and GPA. These approaches integrate propensity scores 
and outcome models, offering more rigorous statistical 
evidence to establish causal connections. Importantly, 
the doubly robust (DR) method highlights an even more 
significant impact, emphasizing the importance of incor-
porating both propensity scores and outcome models in 
studies that aim to establish causal relationships. These 
findings emphasize the necessity of promoting extracur-
ricular activities as a means to enhance academic per-
formance among high school students, which could be 
explained by the following facts. Firstly, effective time 
management and a strong sense of responsibility can be 
developed through participation in extracurricular activi-
ties. These skills can then be applied to academic pursuits, 
allowing students to efficiently allocate their study time 
and improve their GPA. Additionally, engaging in ex-
tracurricular activities that require problem-solving and 

critical thinking can enhance cognitive abilities, which are 
essential for better understanding and absorption of course 
content. Furthermore, teamwork and social interaction in 
extracurricular activities contribute significantly to the 
development of social skills and a cooperative mindset 
among students, which are equally important within an 
academic setting during collaborative projects and discus-
sions. Moreover, participating in extracurricular activities 
provides stress relief for students while also improving 
their mental well-being. This positive state of mental 
health helps students maintain focus on their studies, ulti-
mately enhancing their academic performance.
Even though this study shows a correlation between par-
ticipation in extracurricular activities and scholastic per-
formance, more investigation is required to pinpoint the 
exact causal mechanisms. Subsequent investigations could 
provide a more holistic evaluation of how engagement in 
extracurricular activities influences students’ scholastic 
performance, encompassing factors related to cognition, 
emotions, and social interactions. The implementation of 
these measures will enhance the education system’s effi-
ciency and promote students’ comprehensive growth.
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