
Dean&Francis

Research and Design of Data Encryption Circuit based on D Flip-Flop

Muzhen Tie

Department of Electric and Computer Engineering, University of Rochester, Rochester, NY, US
Corresponding author: mtie@u.rochester.edu

Abstract:
Since information technology is developing so quickly, the problem of data security has become increasingly prominent.
Data encryption technology, as an important means of securing data transmission, plays a vital role in resisting network
attacks and protecting privacy. In this paper, a data encryption circuit based on D flip-flop is studied, aiming to improve
the efficiency and security of data encryption. First, this paper introduces the basic principles of data encryption
and analyzes the application of D flip-flop in encryption circuit. Subsequently, the design principle of Moore’s state
machine is elaborated, and encryption circuit is designed with the use of the state graph and state table. Further, this
paper demonstrates the logic circuit design process., including the derivation of D-flip-flop input Circuit construction
and Boolean expressions. This research provides a hardware implementation design solution for the design of data
encryption circuits, which is expected to play a role in improving encryption speed and enhancing security.
Keywords: State Machines (Moore & Mealy), State Graphs, Logic Gates, D flip flop

1. Introduction
With the swift advancement of information technology,
data security has become the focus of global attention [1].
Among many data protection measures, data encryption
technology is particularly important because of its key
role in ensuring the security of information transmission
[1]. Although traditional software encryption methods
secure data to a certain extent, in the face of increasing
computational demands and sophisticated network attacks
[2], hardware encryption schemes are favored for their
high efficiency and attack resistance [2].
The core of digital circuits are logic gates and flip-flops,
which are the basis for building complex logic systems
[3]. D flip-flops, as a basic timing logic element, not only
play an crucial part in the processing and storage of data,
but also play a key role in designing flexible and powerful
encryption circuits [4]. With a well-designed D flip-flop
network, complex encryption algorithms can be realized
to provide strong protection for data.
The purpose of this paper is to study and design a data
encryption circuit based on D flip-flop. Firstly, this pa-
per will explore the basic principles of logic operations
and the application of D-flip-flops in encryption circuits.
Secondly, this paper will detail the design principles of
Moore’s state machine and show how to utilize state di-
agrams and state tables to design encryption circuits. Fi-
nally, this paper will demonstrate the logic circuit design
method, including the derivation of D-type flip-flop input

Boolean expressions and the implementation of the cir-
cuit.
The structure of this paper is set up as follows: The in-
troduction, which comprises the first chapter, provides
an overview of the paper’s major content and structure
as well as the background and research importance of the
thesis. The second chapter introduces the basic operations
of digital circuits in detail, including the working princi-
ples of logic devices such as not gates, and gates, or gates
and D flip-flops and their applications in circuit design.
Chapter 3 is the encryption circuit design, which provides
the Moore state machine design theory, the process for
making a state table and state graph, and the particular
steps needed to create a logic circuit. Finally, the entire
paper is summed up in the conclusion part, which also
provides an outlook for future research.

2. Basic Logical Operation, Logic
Gates, and Flip-Flop
2.1 Definition of Signal States
Low voltage Level (0): In digital circuits, a low voltage
level usually indicates a logic “0”. It is a voltage level
below the logic threshold of the circuit, depending on the
circuit design, but usually below some reference voltage.
High voltage level (1): Correspondingly, a high voltage
level indicates a logic “1”. It is a voltage level above the
circuit’s logic threshold, usually above a reference volt-
age, indicating an active or true state.

ISSN 2959-6157�

1

Dean&Francis

2.2 Logic Gates Used in the Design
2.2.1 NOT Gate

A NOT gate is a simple logic circuit that performs a basic
logic non-operation, i.e., inverting the state of an input
signal. In digital circuit design, a NOT gate is one of the
basic components for building more complex logic func-
tions.
Functional Description:
A NOT gate has the following functional characteristics:
Single Input: A NOT gate has only one input, which re-
ceives the original signal [5].
Single Output: A NOT gate inverts the input signal and
provides the result through the output [5].

Signal inversion: In the event that the input is a low volt-
age level (0), the NOT gate will produce a high voltage
level (1); in the event that the input is a high voltage level
(1), on the other hand, the NOT gate will produce a low
voltage level (0) [5].
The NOT gate icon is shown in Figure 1:

Fig. 1 NOT gate icon [6]
The NOT gate truth table is shown in Table 1:

Table 1. NOT gate truth table
Input Output

0 1
1 0

2.2.2 AND Gate

An AND gate is a fundamental building block in digital
logic systems, performing the logical “AND” operation in
Boolean algebra.
Functional Description:
Multiple Inputs: an AND gate has two or more inputs and
is used to receive multiple signals [7].
Single output: an AND gate has only one output, which is
used to provide the outcome of each input signal’s “and”
operation [7].
All high input is high: When all the input signals are high,
the AND gate’s output is high; otherwise, it is low. [7].
Application Example:

In a multiconditional logic determination, AND gate out-
put only becomes high when every requirement is met,
indicating that the logic is true.
In control systems, and gate can be used to ensure that an
operation is activated only when multiple signals are cor-
rect.
Figure 2 displays the icon for the two-input AND gate:

Fig. 2 two-input AND gate icon [6]
Table 2 displays the two-input AND gate truth table:

Table 2. two-input AND gate truth table
Input Output

A B C
0 0 0
0 1 0
1 0 0
1 1 1

2.2.3 OR Gate

OR gates are logic gates that implement the “or” operation
in Boolean logic.
Functional Characteristics:

Multiple Inputs: Or gates also have two or more inputs for
receiving multiple signals [8].
Single Output: An OR gate’s output gives the outcome of
the “or” operation for each and every input signal. [8].
Output high if anyone is high: An OR gate has a high out-

2

Dean&Francis

put if at least one of its inputs is high. If each input is low,
the output is also low [8].
Application Example:
In signal selection, an OR gate can be used to select a
high-level signal from multiple input signals and the out-
put is the selected high-level signal.
In a fault detection system, OR gate can be used to detect
any one of multiple fault signals and output a high level as

a warning once a fault occurs.
Figure 3 displays the icon for the two-input OR gate:

Fig. 3 two-input OR gate icon [6]
Table 3 displays the truth table for the two-input OR gate.:

Table 3. two-input OR gate truth table
Input Output

A B C
0 0 0
0 1 1
1 0 1
1 1 1

2.3 Flip-Flop Used in the Design
2.3.1 D Flip-Flop

A D-type flip-flop is a bistable memory cell that can be
controlled by a clock signal. It can store a single binary
data bit and update its output under the control of a clock
signal [9].
Functional Characteristics:
Data Input (D): Data signals are received and stored via
the data input of a D flip-flop. [9].
Clock input (CLK): A clock input on the D flip-flop regu-
lates how data is stored and updated [9].
Output (Q): The current status of the data that is being
saved is provided by the D flip-flop’s output [9].
Complementary Output (Q’): Additionally, the D flip-flop
has a complementary output whose state is the opposite of
Q [9].
Principle of operation:
The D flip-flop stores the current data input signal D into
the internal state when it receives a clock signal, such as
one that transitions from low to high. [9].
The output Q will be updated to the same state as the data
input D [9].
The complementary output Q’ will be updated to the op-

posite state of the data input D [9].
Application Example:
Register design: Data processing and storing multi-bit
registers could be created through connecting D flip-flops
in series.
Counter design: by returning output of a D-type flip-flop
to the input, a counter can be constructed to realize the
digital counting function.
Memory design: Arrays of large numbers of D flip-flops
can form memories, such as random access memory
(RAM).
Figure 4 displays the rising edge D flip-flop symbol:

Fig. 4 rising edge D flip-flop icon [5]
Table 4 displays the rising edge D flip-flop truth table.:

Table 4. rising edge D flip-flop truth table
D Q Q+
0 0 0
0 1 0
1 0 1
1 1 1

3

Dean&Francis

3. Encryption Circuit Design
In this section, the paper will detail the design process of
encryption circuits, including principles of Moore state
machine design, the creation of logic circuit designs as
well as state graph and state tables.

3.1 Moore State Machine Design
One kind of timing logic circuit is a Moore state machine
where the output is solely determined by the present state,
without any influence from the current input [10]. In en-
cryption circuit design, Moore state machine is used to
recognize specific bit streams and control the encryption
process of data based on these bit streams.
Design Principle:
Moore state machine consists of a finite number of states,
each corresponding to a unique output [10]. The State
Transition Diagram describes how the state machine
transfers from one state to another given the inputs.
The State Table lists all possible state transitions, compris-

ing the inputs, outputs, next state, and present state..
Application in encryption circuits:
A Moore state machine is intended to identify two distinct
Bit streams in this architecture: “111” and “101”. When
“111” is detected, the state machine controls the circuit
to start encryption (inverting the input bits) and stops en-
cryption when “101” is detected.

3.2 State Graphs and State Tables
A Moore state machine can be seen visually as a state
graph, showing the transition relationships between states.
A state table, on the other hand, is a detailed list of state
transitions.
State Graph Drawing:
Based on the design requirements, a state graph is drawn
which includes six states: S0, S1, S2, S3, S4 and S5.
The state graph shows how the state machine transfers
from one state to another in case a specific Bit is received.
Figure 5 displays the design of the state graph:

Fig. 5 state graph design
Construction of state table:
The next state and output are specified in the state table of
each state when a “0” or “1” input is received. For exam-
ple, state S0 transfers to S1 and starts the encryption pro-

cess when “111” is received, and stays at S0 when “101”
is received.
Table 5 displays the design of the state table:

4

Dean&Francis

Table 5. state table design

Present
Next State

0 1
Out Put

0 1
S0 S0 S1 0 1
S1 S0 S2 0 1
S2 S0 S3 0 1
S3 S3 S4 1 0
S4 S5 S3 1 0
S5 S3 S0 1 0

3.3 Design of Logic Circuit
The process of translating state tables into real circuit
components that carry out a state machine’s logic opera-
tions is known as logic circuit design.
Derivation of Boolean expression for D-type flip-flop in-
put:

Based on the state table, the Boolean expressions that
control the inputs to the D flip-flops are derived. These
expressions determine how the data inputs (D) of each
flip-flop should be determined using the input bits and the
state at that moment.
Table 6 displays the design of the truth table:

Table 6. truth table design
A B C X A+ B+ C+ Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1
0 0 1 0 0 0 0 0
0 0 1 1 0 1 0 1
0 1 0 0 0 0 0 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 1 1
1 0 0 1 0 1 1 0
1 0 1 0 0 1 1 1
1 0 1 1 0 0 0 0
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

3.4 Logic Circuit Implementation
The circuit design also included the use of Karnaugh di-
agrams (K-maps) to simplify Boolean expressions and
optimize circuit design.

Logic circuits were designed using logic gates (e.g., AND,
OR, NOT) and D-type flip-flops to implement the logic
functions of state machines.
Karnaugh map and simplification is shown in Figure 6:

5

Dean&Francis

Fig. 6 Karnaugh map and simplification
Encryption Circuit Schematic is shown in Figure 7:

Fig. 7 Encryption Circuit Schematic

4. Summary
In this paper, an efficient data encryption method is suc-

cessfully realized by studying and designing a data en-
cryption circuit based on D flip-flop. Based on an in-depth
analysis of the importance of data encryption technology

6

Dean&Francis

and the role of D flip-flop, this paper describes in detail
the design principle of Moore state machine and utilizes
state graph and state table to construct the encryption cir-
cuit. The encryption logic of the circuit is realized through
logic circuit design and the derivation of Boolean expres-
sions.
This study not only provides a hardware implementation
scheme for the design of data encryption circuits. Future
work will focus on further optimizing the circuit design,
which can be done by calculating the logic effort and de-
lay of the critical path, optimizing the circuit to increase
the encryption speed and reduce the power consumption,
and exploring more complex encryption algorithms to
meet the increasing demand for data security. In addition,
the expandability and compatibility of the circuits will be
considered to adapt to different application scenarios and
system requirements.

References
[1] S William and W. Stallings, “Cryptography and Network
Security 4/E [M]”, Pearson Education India, 2006.
[2] M. Iavich, R. Bocu, G. Iashvili and S. Gnatyuk, “Novel
Method of Hardware Security Problems Identification,”
2020 IEEE International Conference on Problems of

Infocommunications. Science and Technology (PIC S&T),
Kharkiv, Ukraine, 2020, pp. 427-431
[3] D. Harris and S. L. Harris, “Digital design and computer
architecture”, Morgan Kaufmann, 2010.
[4] Y. Liang, C. C. Boon, D. Kissinger and Y. Wang, “A Low-
Power D-type Flip-flop with Active Inductor and Forward
Body Biasing Techniques in 40-nm CMOS,” 2019 IEEE 19th
Topical Meeting on Silicon Monolithic Integrated Circuits in RF
Systems (SiRF), Orlando, FL, USA, 2019, pp. 1-4
[5] Not gate (inverter). NOT Gate - Logicly Documentation.
(n.d.). https://logic.ly/lessons/not-gate/#:~:text=A%20NOT%20
gate%2C%20often%20called,results%20in%20a%20true%20
output.
[6] Roth, C. H., & Kinney, L. L. (2014). Fundamentals of Logic
Design, 7. Cengage Learning.
[7] Harris, D. M., & Harris, S. L. (2010). Digital Design and
computer architecture. Morgan Kaufmann Publishers.
[8] WAKERLY, J. F. (2006). Digital Design: Principles and
practices John F. Wakerly. Pearson Prentice Hall.
[9] GeeksforGeeks. (2023, June 14). D Flip Flop. https://www.
geeksforgeeks.org/d-flip-flop/
[10] Moore and mealy machines. Tutorialspoint. (n.d.-b). https://
www.tutorialspoint.com/automata_theory/moore_and_mealy_
machines.htm

7

