
Dean&Francis

Four-Bit Parallel Multiplier based on Digital Circuit Design

Yinsong Yan

Southwest Jiaotong University, Chengdu, China
Corresponding author: el22y3y@leeds.ac.uk

Abstract:
This paper presents an investigation into a four-bit parallel multiplier based on an enhanced digital circuit design. The 
advent of computers and digital electronic systems has led to a significant increase in the importance of multiplication 
operations in a wide range of applications.In this paper, the circuit is designed using the Logisim, and the designed 
circuit is converted into a model and input into Modelsim for simulation. Finally, the feasibility of the circuit is 
verified through the Modelsim model. The objective of the circuit is to implement the multiplication operation of two 
four-bit inputs. The model designed in Logisim can facilitate the process of code writing in Modelsim simulations. 
Furthermore, once the simulation is complete, the simulation results can be compared with the circuit diagram to 
ascertain their alignment with reality. The entire model is based on the concept of a full adder, and the delay is reduced 
by disconnecting the serial feed chain, which results in a 25% reduction in delay compared to a full adder with two 
columns. This approach effectively achieves the desired reduction in delay.
Keywords: full adder, digital circuit, multiplier

1.Introduction
In light of the accelerated advancement of computers and 
digital electronic systems, the significance of multiplica-
tion as a pivotal component of the four fundamental oper-
ations cannot be overstated. A four-bit parallel multiplier 
is a digital circuit that is commonly employed in combi-
national logic circuits. Its principal function is to facilitate 
the multiplication of two four-bit binary numbers. In com-
parison to adders and subtractors, multipliers are capable 
of performing more intricate operations and are perva-
sively utilized in computer processors, image processing 
and other domains [1]. The two input binary numbers are 
multiplied bit by bit and summed up by adding and shift-
ing, resulting in an eight-bit binary number as the product. 
Furthermore, while pursuing efficient computing speeds, 
it is also important to focus on circuit area and power 
consumption in order to meet the demand for low power 
consumption in embedded systems and mobile devices [2].
It has been demonstrated that the simulation and con-
struction of circuit diagrams of digital circuits can be an 
effective method for both learning and testing the knowl-
edge acquired about digital circuits [3]. To gain a deeper 
understanding of the multiplier, a circuit diagram of the 
four-bit binary multiplier was created using Logisim. 
Once completed, the diagram was subjected to logical 
verification, whereby the inputs were altered and the out-
puts were converted to decimal numbers. This process 
was undertaken to ascertain the viability of the multiplier 

and to facilitate the adaptation of the schematic diagram 
of its package, which would subsequently inform the sim-
ulation phase. Once the circuit diagram of the device has 
been completed, the device is simulated in Modelsim. The 
operation logic of the multiplier is then compiled through 
the Verilog language. Following this, the logic of the mul-
tiplier is simulated and verified by writing the test code, 
and the output of the multiplier can be detected through 
the function image simulated by the test code.
The initial section of this document delineates the intro-
ductory aspects, while the subsequent section elucidates 
the gate circuit design and an analysis of the circuit’s 
structural composition. The subsequent section employs a 
series of simulation experiments conducted through Mod-
elsim to procure the concluding experimental data and 
conclusions. The final section presents a comprehensive 
summary of the entire paper.
2.Gate Circuit Design

2.1 Design ideas
In order to design an operation that can realise the multi-
plication of two four-bit binary numbers, the two binary 
numbers are set as the multiplicand A A A A3 2 1 0  and multi-

plier B B B B3 2 1 0 , respectively. The two binary numbers, the 
multiplied number and the multiplier, are represented by 
high and low levels, respectively. The result of the multi-
plication operation is then directly output as an eight-bit 
binary number. The technical methodology is as Figure 1:

ISSN 2959-6157�

1



Dean&Francis

Fig.1 Theoretical model of parallel multiplier
Two four-bit binary numbers are divided into separate 
one-bit binary numbers for the purpose of performing 
arithmetic operations by means of a divider. The addition 
of each column is performed using a full adder, with the 
use of a one-bit full adder. This is achieved by obtaining 
an array of several gates to ensure that the progressive 

output of bit i of the jth step is the progressive input of bit 
i+1 of the next step. Additionally, a row of serially pro-
gressive adders is incorporated at the end. Each one-bit 
binary number of the eight individual outputs is integrated 
into an eight-bit binary number by means of a line splitter 
(Figure 2).

Fig. 2 Hardware structure of the parallel multiplier

2



Dean&Francis

2.2 Gate structure of a parallel multiplier

Fig. 3 Gate Circuit Diagram
This paper presents a circuit diagram created using the 
Logisim software [4]. The multiplier and the two four-
bit binary numbers to be multiplied are divided into eight 
separate one-bit binary numbers by two identical four-bit 
shunts. Each one-bit binary number is then integrated by 
an AND gate, and the intermediate result is obtained by 
adding the intermediate results step by step using all levels 
of the full adder module and storing the intermediate re-
sult in the sum. The rounding signals are present in the co. 
The original two four-bit binary numbers and one eight-bit 
binary number are decomposed into separate one-bit bina-
ry numbers through the use of three shunts: two four-bit 
and one eight-bit [5]. The resulting one-bit binary number 
is then substituted into the circuit for the operation. Fur-
thermore, Figure 3 illustrates the full adder, which will be 
discussed in greater detail in the subsequent section.The 
function of component c in the circuit is to detect whether 
the circuit is functioning correctly. When the circuit is in 
test mode, the potential of component c should be set to a 
high level to ascertain whether the circuit is able to estab-
lish a typical pathway. In normal operation, the potential 
of the circuit should be set to a low level, thereby ensuring 

that all the adders are able to perform the multiplication 
of two four-digit binary multipliers. The following section 
delineates the specific functions of each component.
2.2.1 Input side

The two inputs, designated as A and B, should be set to 
the west, with the number of input bits set to four. The 
names of A and B should be set to the east. The two fan-
in and fan-out values should be set to four. The four-bit 
separator should be set to the west and south. The appear-
ance should be set to the right-handed direction. The two 
four-bit binary numbers should be decomposed by the two 
four-bit separators to yield eight binary numbers, which 
will be used in subsequent operations.
2.2.2 Array arithmetic

Subsequently, the array computation is performed. The 
array computation permits the generation and propagation 
of multiple levels of rounding, whereby each gate is em-
ployed to calculate the rounding. In the event that both in-
puts are 1, a rounding signal is generated and transmitted 
to the subsequent level of the adder. Furthermore, the log-
ic gates operate in conjunction with the adder, generating 

3



Dean&Francis

and propagating progressions in this manner to guarantee 
the accurate transmission of the progression signal to the 
subsequent stage.
2.2.3 .Multiplying array

The multiplication array is realized through the use of 
multiple full adders. The circuit diagram of the full adder 
is provided below for reference.

Fig. 4 Full Adder Circuit Diagram
The adder is composed of one or more gates, two different 
gates, and two or more gates [6]. The progression c0 re-
ceives the initial portion of the A and B sequence through 
the primary gate, the subsequent segment through the 
secondary gate, and the final result of the operation of the 
distinct-or gates a and b. Subsequently, the output of the 
progression is conveyed through an or gate. The sum is 
obtained by first using the first ISO gate to obtain an ISO 
of A and B, and then using the second ISO gate to obtain 
a sum by performing an ISO operation on the result of the 
first step with C. Once the full adder circuit diagram has 
been drawn, the circuit of the full adder is encapsulated; 
that is to say, the corner labels are labelled (see Fig.5) 
and the output and input ports are adjusted according to 
the actual use of the circuit. Once the design of the full 
adder has been completed, the multiplication array can be 
assembled. This allows multiplication to be converted to 
multi-stage addition by summing the results of the array 
operations and passing them through the stages. In this 
stage of the multiplication array, the partial products of all 
the array operations are added together to eventually form 
eight one-bit binary numbers, which in turn give each bit 
of the final result. The c0 to c15 elements of the multipli-
cative array represent the product between the bits a and b, 
which is also the partial product obtained from the array 
computation as previously described. The specific con-
crete mode of operation of partial product is as follows:c0
=a1&b0,c1=a2&b0,c3=a3&b0,while for the same reason-
c15=a3&b3 [7]. Given that both A and B are four-bit bina-
ry numbers, the total number of bits in the partial products 
is sixteen. These partial products are subsequently added 
step by step by the adder to form the final eight-bit output.

Fig. 5 Full adder package
2.2.4 Output of results

The output orientation should be set to west, the number 
of output bits to eight, and the label ‘y’ should be used to 
indicate the output of this four-bit parallel multiplier. Be-
fore the eight-bit output, a separator should be connected 
to set the orientation to north, fan in and fan out to eight, 
and appearance to the left-hand direction. The eight one-
bit binary numbers should then be combined by this eight-
bit separator into one eight-bit binary number.
3.Simulation

3.1 Simulation Methods
The code for the four-bit parallel multiplier has been 
written in Modelsim in Verilog language and compiled in 
hardware language based on the circuit diagram drawn 
in Logisim [8]. Firstly, a project must be created and the 
module name set to ‘multiplier’ (as illustrated in Figure 6). 
Two four-bit binary numbers, a and b, must be introduced 
as the multiplier and multiplied numbers, respectively, 
as well as the input signals of the module. The eight-bit 

4



Dean&Francis

binary number, y, must be introduced as the output of the 
four-bit binary number. The rest must be introduced as the 
reset signal input, and the s and co must be introduced as 
the twelve-bit wide intermediate lines for storing the data 
inside the four-bit parallel multiplier. The s and co are in-
troduced as twelve-bit wide intermediate lines within the 
four-bit parallel multiplier for the storage of partial sums 
and rounding, while the c is introduced as a sixteen-bit 
wide intermediate line situated in the centre of the four-bit 
parallel multiplier for the storage of the result of the mul-
tiplication operation of each bit.

Fig.6 Simulation parameter introduction
Following the establishment of the parameters in accor-
dance with the circuit diagram generated by Logisim, 
the 16- and 12-bit gates and full adders are compiled in 
a step-by-step manner, utilizing the assign statement for 
each multiplication result and the full adder statement for 

the pairwise sum and rounding co calculations.

3.2 Testing 
Following the completion of the code for the four-bit 
parallel multiplier, test code is additionally written to test 
the functionality of the code [9]. This is named a file as 
tb_multiplier, in which the Verilog language is utilised to 
write two for loops about i and j (as shown in Fig. 7). Ad-
ditionally, the operations of the intermediate processes of 
the four-bit parallel multiplier are compiled.

Fig.7 The for loop for i and j
3.3 Simulation results
Once the code and test code have been compiled, the sim-
ulation file can be used to simulate the multiplier [10]. The 
Modelsim simulation function can be employed to obtain 
the simulation results of a four-bit parallel multiplier (see 
Fig 8).

Fig.8 Simulation results
As illustrated in Figure 8, the input value of a is qua-
si-converted from a four-bit binary number to a decimal 
number of 1, the input value of b is converted from a four-
bit binary number to a decimal number of 4, and the two 
numbers are presumed to result in 4. The output of y is 

then converted to a decimal number of 4, which can be 
obtained from the four-bit parallel multiplier that has the 
normal multiplication operation capability. Furthermore, 
the four-bit parallel multiplier mapping diagram can be 
obtained through the use of Modelsim’s dataflow function.

5



Dean&Francis

Fig.9 The dataflow
4.Conclusion
This paper presents the design and simulation of a four-
bit parallel multiplier. The multiplication operation is 

performed by shift summing, which also serves to reduce 
the delay between the various stages of the gate circuit, 
the power consumption and the area occupied by the cir-

6



Dean&Francis

cuit. The circuit diagram was designed in Logisim, and 
the code was verified through the simulation feature of 
Modelsim. In future research, two avenues for improve-
ment should be considered. The first is to further reduce 
the delay and power consumption by using the over-ad-
vancing adder on delay, power consumption and area. The 
second is to enhance the computing speed of the model to 
improve its prospects for application.

References
[1]Immareddy, S., & Sundaramoorthy, A. A survey paper on 
design and implementation of multipliers for digital system 
applications. Artificial Intelligence Review,2022,55(6), 4575–
4603.
[2]Chen, J., & Tian, G. Analysis of low power consumption in 
digital integrated circuit design. Electronic Components and 
Information Technology,2023, 7(06), 144-147.
[3] Rokicki, T. G. Representing and modeling digital circuits 
(Doctoral
dissertation, Stanford University). ProQuest Dissertations 
& Theses. (Publication No.   9422115) ,1994.
[4] Burch, C. Logisim: A graphical system for logic circuit 

design and simulation. Journal on Educational Resources in 
Computing (JERIC), 2002,2(1), 5-16.
[5] Zhang, C., & Wu, J. Algorithmic study of FPGA-based 
multiplier. Electronic Fabrication,2015,(18), 13-14.
[6] Bhattacharyya, P., Kundu, B., Ghosh, S., Kumar, V., & 
Dandapat, A. Performance analysis of a low-power high-speed 
hybrid 1-bit full adder circuit. IEEE Transactions on Very Large 
Scale Integration (VLSI) Systems, 2015,23(10), 2001-2008.
[7] Ashour, M. A., & Saleh, H. I. An FPGA implementation 
guide for some different types of serial–parallel multiplier 
structures. Microelectronics Journal, 2000,31(3), 161-168.
[8] Aguirre Morales, J. D., Marc, F., Bensoussan, A., & Durier, 
A. Simulation and modelling of long term reliability of digital 
circuits implemented in FPGA. Microelectronics Reliability, 
2018,88–90, 1130-1134.
[9] Das, S. R., Li, J. F., Nayak, A. R., Assaf, M. H., Petriu, E. M., 
& Biswas, S. N. Circuit architecture test verification based on 
hardware software co-design with ModelSim. IETE Journal of 
Research, 2013,59(2), 132–140.
[10] Instructional Simulation System for Selected Topics of 
Logic Design using ModelSim and EWB. Al-Mustansiriyah 
Journal of Science, 2014, 25(1)

7




