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Abstract:
This article examines the various uses of Euler‘s formula in complex analysis, topology, number theory, and other 
mathematical fields. Renowned for its mathematical elegance, exponential and trigonometric functions are closely 
related according to Euler‘s formula. acting as a fundamental basis for various key developments in these fields. By 
conducting a thorough analysis, the study reveals the extensive significance and lasting impact of Euler’s formula 
in both theoretical and applied mathematics. The research employs a comprehensive literature review, enhanced by 
rigorous mathematical derivations and practical examples, to demonstrate the widespread applicability and versatility 
of Euler’s formula in a wide range of contexts. The findings underscore that Euler’s formula not only holds a central 
position in theoretical mathematics but also plays a crucial role in engineering, quantum mechanics, signal processing, 
and physics. This study contributes to a deeper understanding of the intrinsic relationships within mathematical 
formulas, emphasizing their far-reaching practical relevance and potential for future research and technological 
innovation.
Keywords: Euler’s formula; Euler’s constant; Riemann zeta function; Fourier analysis.

1. Introduction
Mathematics is a fundamental tool for making sense of 
the world around and driving technological innovations. 
Among the many mathematical discoveries, Euler’s 
formula is particularly remarkable for its simplicity and 
profound impact. This formula, which connects exponen-
tial functions with trigonometric functions in an elegant 
way, has played a key role in shaping various areas of 
mathematics. While it might seem straightforward at first 
glance, Euler’s formula has deep implications that reach 
across both theoretical and applied mathematics. Its in-
fluence extends beyond the realm of pure mathematics, 
finding applications in fields like engineering, physics, 
and computer science. The formula’s ability to tie together 
different branches of mathematics and provide practical 
solutions to complex problems highlights its enduring sig-
nificance [1].
Euler’s formula has been widely recognized and discussed 
in the mathematical community for its versatility and 
far-reaching consequences. One of the most notable areas 
where Euler’s formula has made a significant impact is 
number theory, particularly in cryptography. The formula 
is central to the RSA algorithm, a key method for securing 
data in digital communications [2]. This example shows 
how a theoretical mathematical concept can have a major 
influence on the technology that shapes people’s daily 

lives, especially in ensuring the security and privacy of 
digital information. In topology, the properties of poly-
hedra have been better understood thanks in large part to 
Euler’s formula, leading to the development of the Euler 
characteristic, which is crucial for classifying surfaces 
and structures. This concept has also found applications 
in network theory, where it is useful for studying com-
plicated networks as well as graphs, becoming essential 
within fields like biology, computer science, even the 
social sciences. Additionally, the fundamental component 
of complex analysis is Euler‘s formula, simplifying the 
representation and manipulation of complex numbers and 
functions. These examples illustrate the broad influence of 
Euler’s work, showing how this formula continues to be 
relevant in both theory and practice.
This paper is organized to explore Euler’s formula and its 
wide-ranging applications across different mathematical 
fields. The first section looks at the role of Euler’s formula 
in number theory, focusing on its foundational contribu-
tions to cryptographic methods. The second section turns 
to topology, examining how Euler’s work has influenced 
key concepts and helped classify geometric structures. 
The third section discusses the application of Euler’s 
formula in complex analysis, particularly in simplifying 
complex numbers and related functions. Finally, the paper 
considers the practical uses of Euler’s formula in engi-
neering, quantum mechanics, and physics, highlighting its 
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broad impact and continued relevance in both academic 
and applied settings. Through this exploration, the aim is 
to deepen the understanding of why Euler’s formula re-
mains such an important part of mathematics and how it 
continues to drive progress in science and technology.

2. Contributions in a Range of Mathe-
matics Fields
2.1 Number Theory
Euler made substantial progress in number theory, a 
foundational and ancient branch of mathematics. Euler‘s 
Theorem, a generalization of Fermat‘s Little Theorem, is 
one of his most important achievements [3]. This theorem 
states that if a  is a positive integer and n  is an integer 
coprime to a , then
 a modnϕ(n) ≡1( )  (1)

Euler’s totient function is represented as ϕ (n) . Euler 

introduced ϕ (n) , a function that counts the coprime pos-
itive integers up to n . The totient function is crucial to 

modern cryptography, particularly the RSA technique.

2.2 Geometry and Topology
Euler also made important contributions to the study of 
geometry and topology, especially in the early develop-
ment of topology. One of the most famous results in to-
pology is Euler’s formula [4]
 V E F− + = 2  (2)
which describes the relationship between vertices (V), 
edges (E), and surfaces of a convex polyhedron, and laid 
the foundation for the development of modern topology. 
For Tetrahedron, it has four faces, six edges, and four ver-
tices make up this polyhedron. For Cube, this polyhedron 
consists of eight vertices, twelve edges, and six faces. For 
Octahedron, it has an eight-faced polyhedron with twelve 
edges and six vertices. For Dodecahedron, the 20 vertices, 
30 edges, and 12 faces make up this polyhedron. They all 
satisfy the Euler formula shown in Eq. (2), see Table 1. In 
all cases, the calculation V E F− +  yields a result of 2 , 
which is consistent with Euler’s formula for convex poly-
hedra [5].

Table 1. Examples of Euler’s formula in polyhedra.
Shape Vertices(V) Edges(E) Faces(F)

Tetrahedron 4 6 4

Cube 8 12 6

Octahedron 6 12 8

Dodecahedron 20 30 12

2.3 Graph Theory
Around his well-known solution to the Königsberg bridge 
problem—which inquired if it was possible to walk 
around the city of Königsberg by crossing each of its 
seven bridges exactly once without retracing any steps—
Euler is recognized as the founder of graph theory [6]. 
Euler proved that there could be no such walk, and so the 
first theorem of graph theory was established. He present-
ed the idea of an open trail in a graph that visits each edge 
exactly once, or what is today known as an Eulerian path. 
As well as an Eulerian circuit, in which a path of this kind 
begins and finishes at the same vertex. The problem was 
abstracted by Euler into nodes, which stood in for land-
masses, and edges, which stood in for bridges. This pro-
vided the foundation for the study of networks, which is 
crucial to computer science, biology, and social sciences 
today.

2.4 Calculus and Analytical Geometry
Building on the foundations laid by Newton and Leibniz, 

Euler introduced a significant amount of the notation that 
is used today, such as the function notation  f x( )  , the use 
of e  to denote the base of the natural logarithm, and i  for 
the imaginary unit. Euler was also the first to rigorously 
work with infinite series, providing proofs for the conver-
gence of series that represent functions like the exponen-
tial and logarithmic functions. He introduced the concept 
of the Euler-Maclaurin formula, which bridges discrete 
sums and integrals and is fundamental in numerical anal-
ysis and approximation theory. The study of differential 
equations and its applications in physics, engineering, 
and economics continue to be anchored by Euler‘s work 
on them, especially in the development of what is now 
known as Euler‘s method—a straightforward but effective 
tool for approximating solutions to ordinary differential 
equations.

2.5 Complex Analysis and Euler’s Formula
Euler’s contributions to complex analysis are highlighted 
by his derivation of the formula [7]
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 e cos x isin xix = +( ) ( ) ,  (3)
known as Euler’s formula. This formula is one of the most 
important results in complex analysis because it elegantly 
ties together the exponential function, sine, and cosine, 
thus unifying trigonometry and complex exponentiation. 
The formula has profound implications in many fields: in 
electrical engineering, it is used to simplify the analysis of 
alternating current circuits; in quantum mechanics, it helps 
describe the wave functions of particles; and in signal pro-
cessing, it forms the basis for Fourier transforms, which 
are used to analyze frequencies within signals. Moreover, 
Euler’s identity, derived from this formula eiπ + =1 0 .
Richard Feynman called this identity “the most wonderful 
formula in mathematics” because it neatly links five of the 
most fundamental mathematical constants 1,0, ,π i , and 
e  . This identity not only demonstrates the deep intercon-
nections between different areas of mathematics but also 
has implications in theoretical physics and beyond.

2.6 Euler’s Constant γ
Euler’s constant  γ  is an important constant in mathemat-
ical analysis, playing a significant role in number theory 
and analytic number theory. Euler’s constant is defined as 
the limiting difference between the harmonic series and 
the natural logarithm [8]

 γ = −lim lnn
n→∞

 
 
 
∑n

k=1
1
k

 (4)

This constant arises naturally in various mathematical 
contexts, especially those involving sums and integrals. 
As n  gets closer to infinity, The total of the reciprocals 
of the positive integers, or the harmonic series, diverges. 
Nonetheless, there is a finite limit γ  between the harmon-
ic series and the logarithm of n , which encapsulates a 
subtle but profound aspect of the interplay between dis-
crete sums and continuous functions.
Numerous significant mathematical formulas involve the 
constant γ , which is Euler. For instance, it emerges in the 
expansion of the Riemann ζ  function ζ (s)  around s =1
:

 ζ γ(s s) = + + −
s n

1 ( 1) ( )
−1 !

∑∞
n=2

− nζ n ( 1)n  (5)

This expansion highlights the central role γ  plays in an-
alytic number theory, in particular while researching the 
prime number distribution. Furthermore, γ  is involved in 
the asymptotic expansion of the Gamma function Γ(x) , 
where it appears in the form:

 Γ = − +(x exp x exp) 1
x n n

( γ )∏∞
n=1
 
 
 
1 ( ).x x−1

 (6)

The factorial function is extended to real and complex 
numbers by the gamma function, and its connection to γ  
illustrates the constant’s deep involvement in special func-
tions and complex analysis.
Another important topic in the study of series convergence 
and approximation is Euler’s constant γ . For instance, in 
number theory, the Euler-Maclaurin formula analysis uses 
γ  to yield a useful approximation for sums by integrals:
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Here, γ  implicitly influences the remainder terms, partic-
ularly when the function f x( )  is related to logarithms or 
other functions that grow slowly. Additionally, γ  is cru-
cial in the study of continued fractions, particularly in the 
evaluation of special continued fractions involving loga-
rithms and harmonic numbers. These continued fractions 
often provide highly accurate approximations of γ  and 
other related constants, revealing the constant’s close ties 
to both algebraic and analytic properties of numbers.
The significance of γ  extends beyond pure mathematics. 
In probability theory, for instance, γ  appears in the distri-
bution of prime numbers through the Dickman function, 
which describes the limiting distribution of smooth num-
bers. This demonstrates the constant’s relevance in both 
theoretical and applied contexts. Moreover, γ  plays a role 
in the analysis of algorithms, particularly in the study of 
random structures and algorithms that rely on harmonic 
sums. For example, in the average-case analysis of certain 
algorithms, such as those for sorting and searching, the 
harmonic series frequently arises, and thus γ  contributes 
to understanding the expected performance of these algo-
rithms.

3. Proof and Applications of Euler’s 
Formula
3.1 Proof of Euler’s Formula
Euler’s formula e cos x isin xix = +( ) ( )  is one of the most 
remarkable identities in mathematics, elegantly linking 
the exponential function with trigonometric functions. 
The exponential, sine, and cosine function Taylor series 
expansions can be used to approximate the verification of 
this formula [9].
The Taylor series for the exponential function ez , where 
z  is a complex number, is given by:

 ez =∑∞
n=0

z
n

n

!
 (8)
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For the specific case where  z ix=   (with i   being the 
imaginary unit and x  a real number), the series becomes:

 e ixix = + − − + + −…1 x ix x ix
2! 3! 4! 5!

2 3 4 5

 (9)

For the specific case where z ix=  (with i  being the imag-
inary unit and x  a real number), the series becomes:

 cos x( ) = = − + −…∑∞
n=0

( 1)−
(2 ! 2! 4!n

n n

)
x x x2 2 4

1  (10)

Similarly, the Taylor series for cos x andsin x( ) ( )  are:

 cos x( ) = = − + −…∑∞
n=0

( 1)−
(2 ! 2! 4!n

n n

)
x x x2 2 4

1  (11)

 sin x x( ) = = − + −…∑∞
n=0

( 1)
(
−
2 1 ! 3! 5!n

n n

+
x x x2 1 3 5

)

+

 (12)

3.2 Deriving Euler’s Formula
By separating the real and imaginary components in the 
expansion of eix  , the author observes that the real part of 

the series matches the Taylor series for cos x( )  and the 

imaginary part matches the series for sin x( ) :

 e i xix = − + −… + − + −…
   
   
   
1 x x x x

2! 4! 3! 5!

2 4 3 5

 (13)

For illustration, see Fig. 1. Thus, one finds that
 e cos x isin xix = +( ) ( )  (14)
This proof not only establishes the validity of Euler’s for-
mula but also demonstrates the deep relationship between 
exponential functions and trigonometric functions, which 
are traditionally seen as separate entities.

Fig. 1 Exponential function decomposes into its trigonometric components
3.3 Applications
3.3.1 Fourier Analysis

Complex waveforms in Fourier analysis can be expressed 
as sums of simple sinusoids using Euler‘s formula. The 
Fourier series representation of a periodic function f x( )  
requires the conversion of trigonometric functions into 
complex exponentials, which can be done using Euler‘s 
formula. When a signal is broken down into its component 

frequencies during signal processing, it becomes especial-
ly helpful since it enables analysis and modification of the 
signal in the frequency domain. For instance, the Fourier 
series of a function f x( )  is given by [10]

 f x c e( ) =∑∞
n n=−∞

inx  (15)

where cn  are complex coefficients, which can be calculat-
ed using the integral:
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 c f x e dxn = 2
1
π
∫π−π ( ) −inx  (16)

As an example, the Fourier series approximation of a 
square wave is shown in Fig. 2.
3.3.2 Electrical Engineering

In electrical engineering, Euler’s formula simplifies the 
analysis of alternating current ( AC ) circuits. The voltage 
and current in AC  circuits can be represented as complex 
exponentials, which allows engineers to use algebraic 

techniques rather than differential equations to solve cir-
cuit problems. For example, the impedance Z  in an AC
circuit with a resistor R  and an inductor L  in series can 
be expressed as:
 Z R i L= + ω  (17)
where ω  is the angular frequency of the AC  signal. The 
use of complex numbers and Euler’s formula allows for 
straightforward calculations of voltage and current rela-
tionships in these circuits.

Fig. 2 Fourier series approximation of a square wave
3.3.3 Quantum Mechanics

In quantum mechanics, wave functions, which describe 
the probability amplitudes of particles, often involve com-
plex exponentials. Euler’s formula plays a key role in ex-
pressing these wave functions. For instance, a plane wave 
solution to the Schrödinger equation in one dimension can 
be written as:
 ψ (x t Ae, ) = i kx t( −ω )  (18)

where A is the amplitude, k is the wave number, and ω  is 
the angular frequency. The use of complex exponentials, 
facilitated by Euler’s formula, allows for the elegant and 
compact representation of quantum states.

4. Conclusion
This paper explored the specific applications of Euler’s 
formula in areas such as number theory, topology, and 
complex analysis, highlighting its crucial role in con-
necting various mathematical fields and its significant 
contributions to practical applications. Throughout the 
study, Euler’s formula was shown to provide foundational 
insights that unify different mathematical concepts, mak-
ing it an indispensable tool in both theoretical research 
and applied sciences. However, there are still aspects of 
this formula that merit further investigation. For instance, 
the full potential of Euler’s formula in higher-dimensional 
geometry remains not fully understood. This area, partic-
ularly the exploration of how Euler’s formula could be 
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applied to more complex, higher-dimensional structures, 
presents a promising direction for future studies. Ex-
panding people’s understanding here could lead to break-
throughs in fields such as algebraic geometry and theoreti-
cal physics. Additionally, while the role of Euler’s formula 
in cryptography was touched upon, it is clear that further 
research could delve deeper into its application in emerg-
ing encryption technologies. The evolving landscape of 
data security demands innovative approaches, and Euler’s 
formula may offer new pathways for developing more ro-
bust encryption methods.
Future studies could also place greater emphasis on ap-
plying Euler’s formula to higher-dimensional spaces, 
particularly by analyzing its effectiveness within novel 
geometric frameworks. Moreover, its potential use in 
quantum computing, where it could play a crucial role in 
the management and manipulation of complex quantum 
states, is another exciting area worth exploring. Continued 
exploration of these avenues may uncover new applica-
tions and further enhance the relevance of Euler’s formula 
in modern science and technology.
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