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Abstract:
Water scarcity is a pressing social, economic, and environmental issue with significant corporate sustainability and 
planetary health implications. Therefore, improving the efficiency of water resources use is an important research issue. 
With the rapid development of machine learning technology, relying on the learning ability of learning algorithms and 
the support of computer computing power, it is possible to optimize the global allocation of water resources through 
machine learning technology. This paper investigates the progress made by machine learning methods in water use 
efficiency. Specifically, this paper introduces the basic principle of the machine learning method for evaluating water 
resources efficiency, including classification and regression tasks. Then, several mainstream evaluation indexes of water 
resource utilization efficiency are introduced. Finally, this paper analyzes the main challenges and future development 
direction of machine learning to improve the efficiency of water resources utilization. This paper aims to provide a 
complete research view for researchers using machine learning methods to improve water efficiency.
Keywords: Water use efficiency; Machine learning; Deep learning; Artificial Intelligence.

1. Introduction
Water is an indispensable resource for all life forms and 
underpins societal and economic development. Despite 
covering two-thirds of the Earth’s surface, freshwater is 
not uniformly distributed, and human activities and cli-
mate change threaten its availability. Water scarcity affects 
approximately 80% of the global population and is ex-
pected to worsen, potentially displacing 700 million peo-
ple by 2030. Corporate facilities, particularly those in the 
agriculture, energy, and manufacturing sectors, are signif-
icant water consumers. Their water management practices 
can either exacerbate or alleviate water scarcity issues. 
As such, corporations must assess and improve their wa-
ter-use efficiency (WUE), especially in areas where water 
is scarce [1].
The United Nations has recognized the importance of 
water and sanitation, dedicating one of the 17 SDGs to 
“Clean Water and Sanitation”. This goal emphasizes the 
need for sustainable water management and reducing wa-
ter scarcity. Several metrics have been proposed to moni-
tor and manage water demand and supply. These include 
water withdrawal, discharge, and consumption, essential 
for understanding a facility’s water usage. However, these 
metrics do not consider the geographical context of water 
stress. Water stress is the ratio of freshwater withdrawal to 

the available freshwater resources. It is a critical indicator 
of the balance between water supply and demand. High 
water stress levels can lead to environmental degradation 
and social issues. Figure 1 shows that the Regional and 
global changes in water stress from 2008 to 2018 (The 
data from United Nations World Water Development Re-
port 2023) [2].

Fig. 1 Regional and global changes in water 
stress from 2008 to 2018

Pervious works suggested that context-oriented metrics 
can provide insights that may not be apparent from tradi-
tional metrics. These metrics consider water usage’s out-
put, outcome, and impact, offering a more holistic view of 
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water management. The World Economic Forum (WEF) 
proposes combining water quantity and geographical met-
rics to monitor water consumption and withdrawal in wa-
ter-stressed areas. This approach allows evaluating water 
use that may negatively impact other users or industries 
[3].
With the development of artificial intelligence technology, 
it plays a vital role in improving the efficiency of water re-
sources utilization. Artificial intelligence (AI) technology 
can comprehensively analyze climate, hydrology, and us-
age data and accurately predict the supply and demand of 
water resources. By collecting a large number of historical 
data and using a machine learning algorithm for in-depth 
analysis, the AI system can find the relationship between 
water consumption and various factors (such as weather, 
holidays, population movement, etc.) to predict water 
consumption in the future and help water departments al-
locate resources and make plans more reasonably. Based 
on the supply and demand forecast results, AI can opti-
mize the allocation strategy of water resources to ensure 
the maximum utilization of water resources while meeting 
different water demands.
In practical application, machine learning algorithms must 
make clear the index of water resource utilization efficien-
cy. Firstly, this paper introduces the basic principle of the 
machine learning method for water resources efficiency 
evaluation, including classification tasks and regression 
tasks. Then, several mainstream evaluation indexes of 
water resource utilization efficiency are introduced. Fi-
nally, this paper analyzes the main challenges and future 
development direction of machine learning to improve the 
efficiency of water resources utilization.

2. The Water Use Efficiency with Ma-
chine Learning
2.1 Classification Model
In water resources prediction, machine learning classifica-
tion algorithms commonly include 1) decision tree. Clas-
sify by building a tree-like structure. Each node represents 
a feature, each branch represents a feature value, and 
leaf nodes represent a classification result. Decision trees 
are easy to understand and explain but easy to overfit. 2) 
Random forest. An ensemble learning method classifies 
by constructing multiple decision trees and voting. Ran-
dom forest can reduce the risk of over-fitting and is highly 
efficient when dealing with large data sets. 3) Support 
Vector Machine (SVM). By mapping the samples into 
a high-dimensional space, we can find a hyperplane to 
maximize the interval between classes for classification. 
SVM performs well in dealing with high-dimensional 
data and nonlinear problems. 4) Gradient lifting tree (such 

as XGBoost). An ensemble learning method gradually 
improves the classification performance by iteratively 
training multiple weak classifiers and adjusting the sample 
weights according to the prediction results of the previous 
round. Gradient Boosted Decision Tree(GBDT), such as 
XGBoost, is favoured for its high efficiency and accuracy 
in water resources prediction. Machine learning classifi-
cation plays a vital role in water resources prediction. By 
choosing suitable machine learning algorithms and tuning 
parameters, accurate prediction and effective management 
of water resources can be realized: 1) water quality pre-
diction. Using machine learning algorithms to classify and 
predict water quality data can evaluate the future changing 
trends and pollution risk of water quality. This helps find 
water quality problems in time and take corresponding 
control measures. 2) Water quantity forecast. The future 
range of water quantity change can be predicted by classi-
fying and forecasting hydrological data through a machine 
learning algorithm. This is significant to the rational allo-
cation and scheduling of water resources. 3) Prediction of 
groundwater level. Using machine learning algorithms to 
classify and predict groundwater level data can evaluate 
the future fluctuation trend of groundwater levels. This 
is helpful to make a reasonable groundwater exploitation 
plan and protect groundwater resources [4].

2.2 Regression Model
The regression model is a statistical method used to study 
the quantitative relationship between independent vari-
ables (explanatory variables) and dependent variables 
(response variables). In water resources prediction, inde-
pendent variables may include rainfall, temperature, pop-
ulation, economic development level, and other factors, 
while dependent variables may include water quantity, 
water quality index, or groundwater level. The mathe-
matical expression between independent and dependent 
variables, the regression equation, can be established to 
predict the future water resources situation through re-
gression analysis [5].
Whether a classification model or a regression model, ac-
curate indicators (independent and dependent variables) 
are essential factors affecting the model’s performance in 
machine learning. In addition, a noteworthy fact is that 
the rapid development of machine learning has shown 
good potential in improving water resource utilisation 
efficiency. However, the energy consumption of large-
scale neural network models has attracted wide attention. 
Scope-1 water consumption refers to AI servers’ heat dis-
sipation, requiring vast amounts of clean water for cool-
ing towers and outside air cooling. Liquid cooling within 
servers may also transfer heat to facility cooling systems, 
which ultimately consume water. Scope 2 covers water 
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used offsite for electricity generation, including cooling 
in thermal, nuclear, and hydropower plants. Both scopes 
are operational water consumption. Additionally, Scope-3 
encompasses embodied water in AI supply chains, such 

as microchip production and significant language model 
training/inference, with GPT-4 likely consuming more 
water than GPT-3 due to its larger size, as shown in Figure 
2.

Fig.2 An example of a data center’s operational water usage [6]

3. Indicators of Water Use Efficiency
Physiological WUE indicators. The researchers calculated 
the water use efficiency at the plant physiological level. 
They linked agro-ecosystem‘s water budget and water use 
efficiency with plants‘ fundamental physiological char-
acteristics related to carbon assimilation and water loss. 
Understanding the mechanisms of photosynthesis and 
transpiration parameters on the whole plant WUE can be 
enhanced by expanding from the leaves to the entire plant. 
For instance, a deeper comprehension of the relationship 
between leaf physiology and whole plant attributes would 
be beneficial for crop management and plant breeding, 
as it would aid in cross-scale variety testing. Each of the 
several components that make up physiological WUE is 
a complex trait with minimal effect on WUE. It is vital to 
clarify each component’s properties and how they affect 
WUE in order to enhance physiological WUE. The second 
difficulty is that it is harder to recognize, characterize, and 
quantify the properties of WUE components due to mea-
surement and instrument constraints.
Biomass/grain yield WUE indicators. In agricultural pro-
duction, WUE is often determined by unit water input, 
water consumption, or aboveground biomass or grain 
output. Plant responses are integrated over a longer time 
scale in biomass/grain yield WUE, in contrast to leaf-lev-
el plant physiological WUE, which displays a moment 
in time (seconds to minutes). These WUE indicators are 
essential variables to assess agricultural productivity from 
the standpoints of grain production and economy. They 
can cover a variety of spatial (such as plots, fields, and 
small watersheds) and temporal (such as seasons to years) 
scales, and they are particularly helpful in comparing sim-
ilar variables (such as grain yield and grain yield). It can 

be difficult to compare WUE between various agricultural 
environments and plant measurement factors, even though 
metrics like grain yield or ANPP aid in the comparison of 
WUE between comparable agricultural production vari-
ables. Including non-cash crops, like cover crops, in the 
calculation of biomass/grain yield WUE presents another 
difficulty because they have an impact on consumptive 
water usage and storage. Furthermore, the fallow season 
needs to be taken into account in regions that get rain, as 
it provides soil moisture for income crops.
Ecosystem WUE indicators. The amount of water and car-
bon transported between the land surface and atmosphere 
is reflected in WUE at the patch or ecosystem size, which 
is often determined using the micrometeorology method. 
The ability to measure WUE almost instantly every half 
hour and characterize its diurnal cycle is one of the key 
benefits of utilizing the eddy covariance technique. The 
measurements from the continuous eddy covariance tech-
nique can also be combined to find the ecosystem WUE 
over a range of time periods (from hourly to annual). 
Measurements using the long-term, continuous eddy co-
variance approach yield useful, directly comparable data 
sets that may be used to assess ecosystem WUE across 
global areas, production systems, soil, climate, land use, 
management, and disturbance gradients. Only the land 
area contributing to the measured flux—which can range 
from less than 100 meters to several kilometers, depend-
ing on a number of factors—is evaluated by the horizontal 
carbon absorption (NEP or GPP) and water loss (ET or t) 
measured or obtained by eddy covariance (for example, 
tower height, weather conditions and canopy characteris-
tics). The coverage of eddy covariance is limited by the 
expensive cost of the equipment, intricate logistics needs, 
and challenge of understanding the flux in complicated di-
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verse terrain. Rather of being the directly measured values 
of the canopy functional flux of GPP and T, the measured 
values of NEP and ET of the eddy covariance system indi-
cate the comprehensive flux above the canopy. Converse-
ly, ER and evaporation (e) are confounded with NEP and 
ET, respectively.
Landscape-to-global scale WUE indicators. To make in-
formed decisions, land managers, researchers, and others 
need accurate estimates of WUE at the local, regional, na-
tional, and international levels. On the other hand, a lot of 
WUE measures are made on a much smaller scale, includ-
ing physiology, grain yield, and eddy covariance. On a 
larger scale, they frequently fail to convey the underlying 
diversity. To mechanically relate the smaller-scale WUE 
indicators to a wider spatial range, satellite remote sens-
ing (such Landsat, Sentinel, and MODIS) can be utilized 
at different spatial and temporal resolutions on a global 
scale. When estimating WUE using remote sensing, de-
nominators such as soil moisture, irrigation, ET or T, grid 
precipitation, and vapour pressure difference can be used. 
WUE, which is dependent on remote sensing, is limited 
in a few ways. Many aspects impact the performance, 
usability, and application of all remote sensing data prod-
ucts (e.g., source, technique, ground resolution distance 
or cell granularity, revisit frequency). The calculation of 
remote sensing biomass, GPP, and ET is imprecise due to 
the simplified algorithm and parameter estimation. Hydro-
logical variables (denominator) are typically obtained by 
interpolation or process-based models, hence it might be 
difficult to generate high-resolution estimates with min-
imal uncertainty. Furthermore, the widely used spectral 
reflectance measurement, or “greenness,” highlights the 
need to improve the direct measurement of physiological 
activities like solar-induced fluorescence, as it represents 
the photosynthetic potential rather than actual photosyn-
thesis.
Water use indicators across supply chains. The WUE indi-
ces in the agricultural ecosystem that have been discussed 
thus far are computed at small scales (like leaves and 
fields) or large scales (like basins and the entire world). 
They typically concentrate on plants and take into account 
factors related to plant production (like photosynthesis, 
grain yield, and biomass) or carbon absorption. Howev-
er, there is a long and intricate supply chain involved in 
getting agricultural products from the field to the table, 
which requires a variety of water resources and raises the 
overall water consumption of particular items. Water foot-
print, water productivity, and life cycle assessment are the 
three methods available for doing a thorough assessment 
of the water consumption of the entire supply chain. The 
WUE indices in the agricultural environment that have 
been covered so far can be computed at large or tiny sizes, 

such as fields and leaves, or even the entire world. Usual-
ly focusing on plants, they investigate aspects of carbon 
absorption or plant production (such as photosynthesis, 
biomass, and grain yield). But transporting agricultural 
products from the field to the table involves a convoluted 
and lengthy supply chain that increases the total water 
consumption of specific products and calls for a range of 
water resources. Three approaches are available to under-
take a comprehensive assessment of the water consump-
tion of the complete supply chain: water productivity, 
water footprint, and life cycle assessment.

4. Discussion
Data Quality and Missing Data. The quality of data in ma-
chine learning for agricultural water management directly 
determines the model’s accuracy. Especially for real-time 
monitoring, sensor failures, errors in data transmission, 
and other environmental interference may lead to missing 
or poor data, which further affects the model training and 
prediction performance. This remains a challenge. The 
ELM model performs highly in data with missing values. 
It could fill the gap between all the meteorological data 
and field observations to improve the model forecasting. 
Future research is further conducted to optimize the de-
velopment of new data pre-processing techniques and 
imputation algorithms using a more comprehensive set 
of environmental variables to enhance the robustness of 
models.
Model Complexity and Computational Resources. Al-
though more complex models, such as deep learning mod-
els, could give higher accuracy in prediction, they demand 
a considerable computational budget, creating challenges 
for resource-constrained agricultural setups like small 
farms. One possible way is the use of a layered model 
structure. Much more straightforward and less computa-
tionally expensive models like k-nearest neighbours (kNN) 
can be used for the primary filtering. Later on, more com-
plex models, such as Extreme Learning Machine (ELM), 
can be used in further processing. This will help us move 
closer to high prediction accuracy with less computational 
need. Another advantage is the exploration of platforms 
for edge computing or cloud computing, thus offloading 
computational burdens.
Environmental Heterogeneity Across Different Regions. 
Climate, soil, and crop types vary from region to region, 
making it harder to have a generalistic approach to one 
machine-learning model across areas. This environmental 
heterogeneity leads to low generalization capabilities in 
the model. Enhancing the input data’s diversity and sourc-
es helps provide a model with more excellent generaliza-
tion capability, including microclimate data, soil charac-
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teristics, and growth stage information regarding the crop. 
It would be possible to design adaptive structures of the 
models where the parameters are altered dynamically to 
the given regional conditions.
Models Practical Application and User Adoption: Com-
plex machine learning models are too complicated for 
practical application by a farmer or agricultural manager 
without a technical background. Low user adoption and 
lack of intuitive application interfaces may lead to poor 
adoption. Easy-to-use Decision Support Systems or mo-
bile applications to translate the technical, model-gener-
ated outputs into plain recommendations for operations. 
The farmers can easily access irrigation recommendations 
and decision support through intuitive interfaces without 
necessarily knowing complex algorithms.
Although machine learning techniques promise to be 
beneficial in increasing the efficiency of water resources 
in agriculture, many challenges still need to be addressed 
to improve data quality, meeting the high demand for 
computational resources, environmental heterogeneity, 
and lack of user adoption. Advanced data imputation 
techniques layered model structures, diversity in the input 
variable pool, and user-friendly application systems help 
the intelligent and efficient management of agricultural 
water resources. Careful planning of these applications 
can help prevent trouble in service.

5. Conclusion
Water scarcity is a formidable challenge that transcends 
traditional boundaries, impacting societies, economies, 
and the delicate balance of our natural environment, with 
far-reaching consequences for corporate sustainability 
efforts and the overall health of our planet. As populations 
continue to grow and climate change exacerbates water 
availability issues, enhancing the efficient utilization 
of this precious resource has emerged as a paramount 
research priority. The advent of machine learning tech-
nology, fueled by its remarkable learning capabilities and 
the exponential growth in computing power, offers an 
innovative avenue for addressing this multifaceted prob-
lem. By harnessing the power of machine learning algo-
rithms, researchers can embark on a journey to optimize 
the global allocation and management of water resources. 
These algorithms, trained on vast amounts of data, can 
identify patterns and trends otherwise imperceptible to 
humans, enabling us to make data-driven decisions that 
maximize water efficiency. This paper delves into the 
exciting advancements made by machine learning in this 

realm, showcasing how it is revolutionizing our approach 
to water use efficiency. At the core of this exploration, 
this paper presents the fundamental principles of machine 
learning as applied to evaluating water resource efficiency. 
This encompasses techniques such as classification, where 
algorithms categorize water usage patterns into distinct 
groups, and regression, which predicts future water de-
mand or consumption based on historical trends and other 
variables. By understanding these foundational concepts, 
readers gain insight into the methodological backbone of 
this research. Furthermore, this paper introduces several 
key performance indicators (KPIs) and evaluation indexes 
commonly employed to measure the effectiveness of wa-
ter resource utilization. These metrics, including but not 
limited to water productivity, water use efficiency ratios, 
and environmental impact assessments, provide a compre-
hensive framework for assessing the success of machine 
learning-driven interventions.
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