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Abstract:
This paper explores the application of the Small Disturbance Equation (SDE) across subsonic, transonic, and supersonic 
flow regimes. Derived from the Euler and Navier-Stokes equations, the SDE offers an efficient framework for 
analyzing aerodynamic behaviors, particularly through the utilization of discretization techniques and iterative solving 
methods executed in Python. The study assesses the accuracy and limitations of the SDE in detailing essential flow 
characteristics, revealing that while the equation performs effectively in subsonic and transonic flows, it encounters 
challenges in supersonic regimes. Nonlinear effects such as shock waves significantly hinder its performance at high 
speeds. Compared with conventional computational fluid dynamics (CFD) methods, the SDE stands out in scenarios 
where computational efficiency is paramount. However, its limitations in handling high-speed flows must be carefully 
considered, highlighting the need for further refinement in its application to supersonic dynamics. This analysis suggests 
that while the SDE is beneficial for certain aerodynamic studies, its scope and utility are constrained by the inherent 
complexities of high-speed fluid dynamics.
Keywords: Computational fluid dynamics; Small disturbance equations.

1. Introduction
Fluid dynamics plays a pivotal role in aerospace engi-
neering, crucial for enhancing aircraft performance and 
ensuring safety. The Small Disturbance Equation (SDE), 
derived from the Euler and Navier-Stokes equations, pro-
vides a simplified yet effective model for analyzing fluid 
behavior, particularly in environments where disturbances 
are relatively minor compared to the overall flow. This 
equation is especially beneficial for evaluating thin airfoils 
in subsonic and transonic regimes [1][2][3]. By simplify-
ing the full potential equations, the SDE facilitates more 
efficient computational analyses, maintaining essential 
fluid dynamic characteristics while reducing the compu-
tational burden [4][5]. This efficiency is invaluable in the 
early stages of aerodynamic design, allowing for rapid and 
reliable assessments without the extensive computational 
demands of more complex models.
Research Problem: While the SDE proves effective in 
subsonic and transonic conditions, capturing key flow 
dynamics such as speed, pressure, and the interaction be-
tween fluid and aerodynamic surfaces [6], it encounters 
significant challenges when extended to supersonic re-
gimes. The primary issue arises from the SDE’s inability 
to handle nonlinear phenomena, notably shock waves [7]. 

This limitation becomes particularly evident as the flow 
transitions to higher speeds, where the SDE struggles to 
maintain accuracy. The inability to predict flow behavior 
accurately in supersonic conditions suggests a need for 
caution in applying the SDE to high-speed scenarios, 
where more sophisticated models may be necessary to 
capture the complexities of supersonic dynamics accurate-
ly [8].
This Paper’s Contribution: This paper examines the appli-
cation and limitations of the Small Disturbance Equation 
across various flow regimes, with a specific focus on its 
performance in subsonic, transonic, and supersonic condi-
tions. The study utilizes discretization techniques and iter-
ative solving methods programmed in Python to analyze 
the SDE’s effectiveness in detailing essential aerodynamic 
behaviors. It demonstrates that while the SDE is advanta-
geous for scenarios demanding computational efficiency, 
such as in preliminary design phases, its applicability in 
supersonic flows is restricted due to its inadequate han-
dling of nonlinear effects like shock waves. Through com-
prehensive analysis, this paper highlights the necessity 
for further refinement of the SDE or the adoption of more 
advanced computational fluid dynamics methods when 
addressing the challenges of supersonic flow dynamics, 
thus contributing valuable insights for aerodynamic re-
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searchers and practitioners.

2. Background
The small disturbance equations (SDE) are derived from 
1D Euler equations. Navier-Stokes equations describe the 
general behaviour of the flow [9]. The equations are illus-
trated below:
Conservation of Mass/Continuity Equation:

	 ∂
∂
ρ
t
+ =div U(ρ ) 0 � (1)

Conservation of Momentum/Momentum Equation:

	
∂(
∂
ρ
t
U )

+ + =div U U pI div(ρ τ? ) � (2)

Conservation of Energy/Energy Equation:

	
∂(
∂
ρ
t
E )

+ = ∇ +div EU div k T div U(ρ σ) ( ) ( ) � (3)

1D Euler equations describe the behaviour of 1D com-
pressible, inviscid flow and can be derived from the equa-
tions above with following relations:

	 p e= −( 1)γ ρ � (4)

	 c p2 = γ ρ/ � (5)
The 1D Euler Equations can be obtained:

	
∂ ∂
∂ ∂
t x

     
     
     
          

ρ ρ ρ
u u u
p c u p

+ =
u
0 1/ 0
0 ρ 2

0
ρ � (6)

	In the case when vorticity ∇×v  is zero, v = ∇ϕ  in which 
ϕ  represents the flow potential. The continuity equation 
can be represented as below:

	 ∂
∂
ρ
t
+ ∇ =div (ρ ϕ ) 0 � (7)

For steady flow, the time derivative disappears and we 
have the relation of density with a single unknown:

	
ρ
ρ

0 0

= −(1 )
∇
2H
ϕ 2

γ
1
−1 � (8)

Substitute equation (8) into (7), the steady full potential 
equation in non-conservative form can be obtained:

	 (1 1 1 2 2 2 0− + − + − − − − =M M M M M M M M Mx xx y yy z zz x y xy x z xz y z yz
2 2 2)ϕ ϕ ϕ ϕ ϕ ϕ( ) ( ) � (9)

	M M M Mx y z= = = =
ϕ ϕ
c c c c

x z, , ,
ϕ y 2 ∇ϕ
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2

 with wall BC 

vn = =
∂
∂
ϕ
n

0 � (10)

	 c H2 = − − ∇( 1)γ ϕ 
  0

1
2

2 � (11)

The small disturbance equation is a simplification of the 
full potential equations in case of thin obstacles such as 
thin airfoils [10]. In this paper, the equations are restricted 
to 2-dimension. The perturbation is considered to change 
uniform flow in x-direction with velocity of magnitude 
U∞ . The potential can be represented as below:

	 ϕ ϕ= +U x∞ ( ) � (12)
Since this paper focus on 2D situations with uniform flow 
in x-direction, velocities in x and y directions can be ex-
pressed as:
	 u U= +∞ (1 )ϕx � (13)

	 v U= ∞ϕ y � (14)
In this case, the full potential equation becomes:

	 (1 0− + =M x xx yy
2 )ϕ ϕ � (15)

In some cases when M∞ is small can be considered as 
incompressible, Mx can be simplified as M∞ to reduce the 
complexity of computation.
The wall boundary condition (BC) becomes:
	 v U u f x U f x= + ≈( ) ( )∞ ∞' '( ) � (16)
Research Object: The objective of this paper is to analyze 

the small disturbance equation (SDE) within the context 
of subsonic, transonic, and supersonic flow regimes. The 
Small Disturbance Equation is used as a simplified model 
of Navier-Stokes equations for studying the behavior of 
fluid flows. [2] In this paper, analysis of flow effects such 
as shock wave will be carried out and detailed flow charts 
with visualizations of the streamlines will be presented. 
The goal is to assess the performance of SDE based on the 
behaviour in different flow speeds and provide guidance 
on the use of SDE for various aerodynamic design and 
analysis applications.

3. Research Method
3.1 Computational Approach
In this paper, the computational approach for solving the 
small disturbance equation (SDE) is based on discretiza-
tion methods of derivatives. The full potential equation 
derived in 2.1 has 2 second-order derivates of velocity 
potential in x and y direction. These derivates can be dis-
cretized using central difference scheme as below:

	 ϕ ϕ ϕ ϕxx i j i j i j= − +
?
1
x2 ( 2 )− +1, , 1, � (17)

	 ϕ ϕ ϕ ϕyy i j i j i j= − +
?

1
y2 ( 2 ), 1 , , 1− + � (18)

To simplify the calculations, assume ? ?x y h= = . The 
discretization form of full potential equation can be writ-
ten as:

	 (1 ( 2 ) ( 2 ) 0− − + + − + =M x i j i j i j i j i j i j
2 ) ϕ ϕ ϕ ϕ ϕ ϕ− + − +1, , 1, , 1 , , 1
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� (19)
Rearrange the equation so that ϕi j,  can be expressed as:

	 ϕi j, =
(1 ( )− + + +M x i j i j i j i j

2 )(ϕ ϕ ϕ ϕ− + − +1, 1, , 1 , 1

4 2− M
)
x
2 � (20)

When it comes to the supersonic case, the wave equation 
below plays an important role:

	 ∂ ∂
∂ ∂

2 2

t x
u u
2 2− =c2 0 � (21)

As the full potential equation in 2.1 can be written in the 
form of wave equation, the stability verification method 
for wave equation is validate for full potential equation. 
Based on the calculation, the central difference method 
used for subsonic flow is unstable for the supersonic case. 
Based on the wave equation, the supersonic case uses fi-

nite difference approximations:

	 (1 ( 2 ) ( 2 ) 0− − + + − + =M x i j i j i j i j i j i j
2 ) ϕ ϕ ϕ ϕ ϕ ϕ, 1, 2, , 1 , , 1− − − +

� (22)

	 ϕi j, =
(1 2 ( )− − + + +M x i j i j i j i j

2 )( ϕ ϕ ϕ ϕ− − − +1, 2, , 1 , 1

1+ M x
2

)
� (23)

For transonic case, K is introduced as:
	 K M M= − − −1 1x x x

2 2( γ ϕ) � (24)
The discretization form of K is written as:

	 K M Mi j x x, = − − −1 12 2( γ )
ϕ ϕi j i j+ −1, 1,−

2
� (25)

Combining the transonic and supersonic full potential 
equations get:

	 µ ϕ ϕ ϕ ϕ ϕ ϕ µ ϕ ϕ ϕi j i j i j i j i j i j i j i j i j i j i j i j i j. 1, , 1, 2, , 1 , , 1 . , 1, , 1,K K− − − − + − +( − + + − + + − − + =2 2 1 2 0) ( ) ( ) ( ) � (26)

in which µi j.  equals 0 when Ma<1 and 1 when Ma>1.

Let A Ki j i j i j, . 1,= µ −  and B Ki j i j i j, . ,= −(1 )µ , ϕi j,  of transon-
ic situation is:

ϕi j, =
A B A Bi j i j i j i j i j i j i j i j i j, 2, , , 1, , 1, , 1 , 1ϕ ϕ ϕ ϕ ϕ− − + − ++ − + + +( 2 )

− + +A Bi j i j, ,2 2
� (27)
The code is created in Python using iteration method. It 
applies an iterative method to solve the linear algebra 
equations of the flow potential. The key function of the 
codes begins with an initial guess for flow potential and 
updates it through iterative solving of formula dp equals 
discretization form of ϕi j,  minus newphi[i,j]. A second 
function calculates the error during the analysis. It returns 
its calculations every 100 iterations and can check if the 
scheme converges. The third function decomposes the 
velocity field into x and y components, which is crucial 
to create streamline plots. The last function is related to 
boundary conditions of the bottom and will be discussed 
in section 3.2.

3.2 Boundary Conditions and Flow Situations
The 2D flow region studied in this paper will be restrict-
ed in domain x∈[0,3]  and y∈[0,1] . The left and right 
boundaries are based on the values of the flow in infinity 
condition. Left boundary is the inflow and right boundary 
is the outflow. The top boundary is the same as the left 
and right boundaries. It is an imaginary limit that defines 
the region the python code should calculate. The bot-
tom boundary is a Neumann boundary. It has a bump in 
x∈[1,2]  and can be expressed based on its slope function 
denoted as g(x):

	 g x( ) = 


β πcos x x(
0,
(
otherwise
− ∈1 , 1,2)) [ ] � (28)

In this paper, β = 0.2  is selected.
To discretize the Newmann boundary condition on the 
bottom, an imaginary point ϕi j, 1−  is created:

	 gi j, =
ϕ ϕi j i j, 1 , 1+ −

2
−
h

� (29)

As a result, we can express the imaginary point ϕi j, 1−  in 

the form of gi j,  and ϕi j, 1+ :

	 ϕ ϕi j i j i j, 1 , 1 ,− += − 2hg � (30)
Substitute equation 30 to the equations of discretization 
form of ϕi j,  in section 3.1, the discretization form of ϕi j,  
on bottom boundary is derived:
Subsonic:

	 ϕi j, =
(1 2 2− + + −M hgx i j i j i j i j

2 )(ϕ ϕ ϕ− + +1, 1, , 1 ,

4 2− M
)

x
2 � (31)

Supersonic:

	 ϕi j, =
(1 2 2 2− − + + −M hgx i j i j i j i j

2 )( ϕ ϕ ϕ− − +1, 2, , 1 ,

1+ M x
2

)
� (32)

Transonic:

ϕi j, =
A B A B hgi j i j i j i j i j i j i j i j i j, 2, , , 1, , 1, , 1 ,ϕ ϕ ϕ ϕ− − + ++ − + + −( 2 ) 2 2

− + +A Bi j i j, ,2 2
� (33)
For subsonic case, we choose Ma = 0.3 as our Mach num-
ber. Ma = 0.95 is selected for the transonic case so that 
the flow can accelerate when going over the nozzle. The 
supersonic case chooses flow speed of Ma = 2.5.
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3 Results and Discussion
4.1 Simulation results

Fig. 1 Streamlines in subsonic, supersonic and transonic flow regimes (Photo credit: Original).
As show in the Fig. 1. The streamline plots show different 
flow behavior based on the Mach number. In the subsonic 
regime, the streamlines indicates that the flow is smooth 
and does not exhibit large disturbances or discontinuities. 
The uniform spacing of streamlines illustrates small pres-
sure changes, and the flow is mostly attached to the sur-
face. The supersonic regime shows distinct changes com-
pared to subsonic flow. The streamlines exhibit significant 
deflections and appear more compressed. The appearance 
of a shock wave is illustrated by the turning of streamlines 
going from the leading edge of the bump to the top right. 
The streamline plot of transonic flow shows a mixed flow 
behavior. The flow accelerates across the bump, especially 
near the center. There are discontinuities of streamlines 
near the center, indicating the occurrence of compression 

and expansion waves.

4.2 Error Analysis and Future Improvements
For all three flow regimes, error decreases as the number 
of iterations increases. Supersonic scheme has a differ-
ent behaviour as other two schemes. Despite the initial 
reduction of error until 100 iterations, the error remains 
unchanged afterwards. This indicates that the superson-
ic scheme may struggle with nonlinear supersonic flow 
behaviour such as shock waves. Both Subsonic and tran-
sonic scheme shows the convergence behavior. The error 
decreases rapidly with the increasing iteration steps and 
follows an exponential decay pattern. The error reduc-
tion of transonic scheme is slower than that of subsonic 
scheme, reflecting the complexity of transonic flow. As 
show in the table 1.

Table 1. Error under different flow regimes with number of iteration steps.
Number of 
Iterations M∞ 0.3 2.5 0.95

0 4.25520×10-5 1.40047×10-4 4.33907×10-5

100 1.39127×10-5 5.26928×10-6 2.27165×10-5

200 4.93359×10-6 5.26928×10-6 1.05248×10-5

300 1.73264×10-6 5.26928×10-6 4.93265×10-6

400 6.10015×10-7 5.26928×10-6 2.32813×10-6

500 2.17196×10-7 5.26928×10-6 1.10341×10-6

4 Conclusion
This study rigorously evaluates the Small Disturbance 
Equation (SDE) for its applicability across various flow 
regimes, underscoring its efficiency and reasonable accu-
racy in subsonic and transonic conditions. However, the 
investigation reveals significant limitations in its perfor-

mance when extended to supersonic flows, primarily due 
to the inability of the SDE to effectively handle nonlinear 
phenomena such as shock waves. These findings illumi-
nate the SDE’s dual character: while it serves as a robust 
tool in environments where computational speed is priori-
tized, its use in high-speed aerodynamic analyses demands 
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caution due to potential discrepancies between the model 
predictions and actual flow behaviors.
Given the observed limitations of the SDE in supersonic 
conditions, future research should focus on refining the 
equation or developing new methodologies that enhance 
its applicability and accuracy in high-speed flow regimes. 
This could involve integrating the SDE with more com-
plex computational fluid dynamics (CFD) models that 
are better equipped to handle the intricacies of nonlinear 
effects. Further, there is an opportunity to explore the 
integration of machine learning techniques with tradi-
tional fluid dynamics models to predict and correct the 
limitations inherent in current methodologies. Such ad-
vancements could significantly improve the predictive 
capabilities of simulation tools, ultimately leading to more 
reliable and efficient designs in aerospace engineering and 
beyond. These future directions not only aim to expand 
the scope of the SDE but also enhance its practical rele-
vance in the field of fluid dynamics.
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