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Abstract:
Gaussian integrals, particularly those involving the function e−x2

, play a central role in various fields, ranging from 
physics to finance. This paper explores the computation of Gaussian integrals, beginning with the fundamental integral 
in the interval −∞  to ∞,  which yields π . The author extends this analysis to integrals involving powers of x  
multiplied by e−x2

, showing their relevance in calculating moments in quantum mechanics and probability theory. 
Additionally, the author discusses the applications of multivariate Gaussian integrals in machine learning and statistical 
mechanics, where they are key to solving problems in high-dimensional spaces. Practical examples are provided from 
quantum mechanics (path integrals), statistical mechanics (partition functions), finance (option pricing models), and 
machine learning (Gaussian processes). Through these examples, the paper highlights the versatility and universality 
of Gaussian integrals as essential tools in both theoretical and applied contexts. The integral’s widespread applicability 
reflects its importance in connecting mathematical theory with real-world phenomena. This work highlights the role 
played by the Gaussian integral.
Keywords: Gaussian integral; Computation; Applications in different fields.

1. Introduction
Gaussian integrals are among the most important integrals 
in mathematical physics, appearing in a wide range of ap-
plications across different scientific and engineering fields 

[1]. The fundamental Gaussian integral, ∫∞ −
−∞ e dxx2

,  is a 

cornerstone in probability theory, where it forms the basis 
for the normal distribution—a key concept in statistics. In 
addition to this, extensions of the Gaussian integral, such 
as those involving higher powers of x  multiplied by e−x2

, are crucial in fields like quantum mechanics, where they 
are used to compute expectation values and transition am-
plitudes, and in machine learning, where they enable the 
calculation of predictive distributions in models based on 
Gaussian processes [2].
One of the reasons Gaussian integrals are so widely ap-
plicable is their versatility in being adapted to different 
problem domains. For instance, in physics, they are essen-
tial for evaluating path integrals in quantum mechanics, 
where they help describe the behavior of particles in a 
potential field. In statistical mechanics, Gaussian integrals 
are employed to calculate partition functions, allowing 
researchers to derive thermodynamic properties of sys-
tems from microscopic models [3]. In finance, the Black-

Scholes model, a cornerstone of modern financial theory, 
relies heavily on the evaluation of Gaussian integrals to 
price options and other derivatives. In these diverse appli-
cations, Gaussian integrals offer an analytical method to 
address problems that might otherwise be too complex to 
solve.
Moreover, in multivariate cases, the Gaussian integral 
generalizes to higher dimensions, becoming integral to 
problems involving multiple variables. This generalization 
is particularly useful in Bayesian inference and machine 
learning, where Gaussian distributions are often assumed 
due to their mathematical convenience and their ability 
to model real-world data distributions accurately [4]. The 
connection between Gaussian integrals and the geometry 
of high-dimensional spaces opens new avenues for re-
search and application in data analysis, optimization, and 
artificial intelligence.
Given the breadth and depth of their applications, under-
standing the computation and use of Gaussian integrals 
is critical for both theoretical and applied researchers. 
This paper will focus on detailed computations of these 
integrals, followed by an exploration of their applications 
in various domains. By examining concrete examples in 
quantum mechanics, statistical mechanics, finance, and 
machine learning, the author aims to provide a compre-
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hensive understanding of the significance of Gaussian 
integrals in scientific and practical contexts.

2. Computation of Gaussian Integrals
The Gaussian integral, which involves evaluating the 
function e−x2

 over the entire real line, is fundamental in 
many branches of mathematics and physics. Mathemati-
cally, it is expressed as [5]

 I = ∫−
∞
∞ e dx−x2

 (1)

The result of this integral is π , despite the indefinite 

integral of e−x2

 being non-expressible in terms of elemen-
tary functions. This exact value is derived through a clev-
er approach using polar coordinates and leveraging the 
function’s symmetry. To compute this, the author starts by 
squaring the original integral:

 I e dx e dy2 =   
  
  
∫ ∫∞ − ∞ −
−∞ −∞

x y2 2

.  (2)

This product represents a double integral over the entire 
plane:

 I e dxdy2 = ∫ ∫∞ ∞
−∞ −∞

− +(x y2 2 ) .  (3)

Switching to polar coordinates, where x rcos= θ  and 
y rsin= θ , leads to x y r2 2 2+ = . The Jacobian determinant 

is J r= , converting the double integral into:

 I e rdrd2 2= ∫ ∫0 0
π ∞ −r2

θ .  (4)

The angular component integrates straightforwardly 

∫0
2π dθ π= 2 .  Next, the author evaluates the radial part 

∫0
∞ −re drr2

.  Letting u r= 2  implies du rdr= 2 . Thus, the 

integral simplifies to:

 ∫ ∫0 0
∞ − ∞ −e du e duu u1 1 1

2 2 2
= = .  (5)

Consequently, the original integral is

 I 2 = ⋅ =2 ,# 6π π1
2

( )  (6)

yielding I = π  [6]. This result is pivotal in many appli-
cations, especially in probability theory, quantum mechan-
ics, and statistical analysis.
2.1 Extended Gaussian Integrals: x en x− 2

A significant class of Gaussian integrals includes those 
that involve e−x2

 multiplied by xn . These integrals fre-
quently appear in quantum mechanics, particularly for 
computing moments or expectation values, and in statisti-
cal mechanics when evaluating specific distributions. The 

general form of this class of integrals is [7]

 I x e dxn = ∫∞ −
−∞

n x2

.  (7)

The integral’s value depends on whether n  is even or odd. 
If n  is odd, the integral is zero because the function is odd 
over a symmetric interval. For even values of n m= 2 , the 
integral is non-zero and can be computed using recursion. 
The relationship is:

 I x e dx I2 2 2m m= =∫∞ −
−∞ −

2m x2 (2 1m
2
− ) .  (8)

Starting with the base case I0 = π , this recursive formu-
la allows people to calculate higher moments systemati-
cally. The solution for even n m= 2  is:

 I2m =
(
2 !
2 !
m

m
m
) π .  (9)

This computation is vital in numerous scenarios, including 
evaluating integrals in quantum harmonic oscillators and 
determining the moments of the normal distribution.

2.2 Applications of Extended Gaussian Inte-
grals

The extended Gaussian integral ( )I x e dxn = ∫∞ −
−∞

n x2

 finds 

applications in many scientific areas. In quantum mechan-
ics, for example, the expectation value x2m  of the posi-
tion operator for a harmonic oscillator is directly related 
to these integrals, given by [8]

 x2m =
(
2 !
2 !
m

m
m
) .  (10)

This result emerges naturally when analyzing the wave-
function of a quantum oscillator.
In probability theory, extended Gaussian integrals are 
used to determine the moments of the normal distribution. 

For a standard normal variable X , the moment E X  
n  is 

expressed as:

 E X x e dx  
n n x= ∫∞ −

−∞ 2
1
π

2 /2 .  (11)

For even n m= 2 , this simplifies to:

 E X  
2m =

(
2 !
2 !
m

m
m
) .  (12)

These moments explain why the variance of the standard 
normal distribution is 1 and why all odd moments are 
zero.

2.3 Multivariate Gaussian Integrals
Gaussian integrals also extend to higher-dimensional 
spaces, dealing with functions like e− +x Ax b xT T

, where A  is 
a symmetric positive definite matrix. The general solution 
in these cases is:
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 ∫
Rn e dx A e

− +
1 1
2 2

x Ax b x b A bT T T

= (2 .π )n/2 1/2−
−1

 (13)

These integrals are prevalent in machine learning, partic-
ularly within Gaussian process regression and variational 
inference [9]. They enable the computation of posterior 
distributions and predictions by integrating over high-di-
mensional spaces efficiently.

3. Applications of Gaussian Integrals
The versatility of Gaussian integrals across multiple fields 
highlights their importance. Here, the author examines 
key applications in physics, statistical mechanics, finance, 
and machine learning.

3.1 Physics: Path Integrals in Quantum Me-
chanics
In quantum mechanics, path integrals provide a frame-
work for describing the behavior of particles, especially in 
potential fields. Richard Feynman introduced the concept 
of path integrals, reformulating quantum mechanics to 
describe the probability amplitude of a particle’s path as a 
sum over all possible paths. Each path is weighted by eiS /

, where S  is the action of the path, defined as the integral 
of the Lagrangian over time [10]

 S Ldt= ∫t
t1
2 .  (14)

For a free particle, the action S  is quadratic in terms of 
position and velocity, leading to a Gaussian form. The path 
integral for a particle transitioning from point x1  to x2  

over time T  is expressed as ∫exp S x t x t 
 
 

i [ ( )] [ ( )].  

When S  is quadratic, this integral reduces to a Gaussian 
form. A classic example involves the harmonic oscillator, 

where the potential energy is quadratic: V x m x( ) = 1
2

ω 2 2 . 

The action becomes:

 S m x m x dt= −∫T
0
 
 
 

1 1
2 2

.
2 2 2ω .  (15)

The path integral for the harmonic oscillator can be exact-
ly evaluated due to the quadratic form of the Lagrangian, 
leading to:

∫exp x x dt Dx 
 
 
− + =

1
 

∫T
0

m m
2 2
 
 
 

.
2 2 2ω

π ωi sin T
ω
( )

.  (16)

This result is a Gaussian integral in infinite dimensions 
(over all paths), demonstrating how Gaussian integrals 
enable the exact calculation of transition amplitudes in 
quantum mechanics.

3.2 Statistical Mechanics: Partition Functions 

and Thermodynamic Properties
In statistical mechanics, the partition function Z  is a 
central quantity that encodes the statistical properties of a 
system in thermodynamic equilibrium. For a system with 
Hamiltonian H , the partition function is defined as:

 Z e d= Γ∫ −βH ,  (17)

where β =1/ (k TB )  and dΓ  denotes integration over the 
phase space of the system [11]. For systems whose Ham-
iltonian includes quadratic terms in the coordinates or mo-
menta, such as the ideal gas or harmonic oscillators, the 
partition function simplifies to a Gaussian integral.
Consider a one-dimensional harmonic oscillator with 
Hamiltonian:

 H m q= +
2 2
p
m

2 1 ω 2 2.  (18)

The partition function in phase space (integrating over 
both position q  and momentum p  becomes:

 Z exp m q dpdq= − +∫ ∫∞ ∞
−∞ −∞

 
 
 

β ω
 
 
 2 2

p
m

2 1 2 2 .  (19)

Evaluating the integrals separately for p  and q , both of 
which are Gaussian:

 Z e dp e dq= ∫ ∫∞ ∞
−∞ −∞

−β
2
p
m

2
−β ω1

2
m q2 2

.  (20)

For the momentum integral, it is 

∫−∞
∞ e dp

−β
2
p
m

2

= 2π
β

m .  For the position integral, it 

is ∫∞−∞ e dq
−β ω1

2
m q2 2

=
β ω

2
m
π

2 .  Thus, the partition function 

is Z =
βω
2π .  From the partition function, one can derive 

thermodynamic properties, such as the internal energy U , 
given by:

 U = − =
∂
∂
lnZ
β

ω
2

.  (21)

This illustrates how Gaussian integrals facilitate the calcu-
lation of macroscopic properties from microscopic models 
in statistical mechanics.

3.3 Finance: Gaussian Integrals in the Black-
Scholes Model
The Black-Scholes model is a cornerstone of financial 
mathematics, used for pricing European options. The 
model assumes that the price of a financial asset follows 
a geometric Brownian motion, which is characterized by 
normally distributed log returns. The price of a European 
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call option in the Black-Scholes model is [12]
 C S T SN d Ke N d( , ,) = −( 1 2) − −r T t( ) ( )  (22)

where N d( )  is the cumulative distribution function of the 
standard normal distribution, and

d d d T t1 2 1= = − −
ln S K r T t( / / 2) + + −

σ
(

T t
σ

−

2 )( )
, .σ  (23)

Here, S  is the current stock price, K  is the strike price, 
T  is the time to maturity, r  is the risk-free rate, and σ  is 
the volatility of the stock’s returns. The terms N d( 1 )  and 

N d( 2 )  represent probabilities that the option will end in-
the-money, and they are computed using Gaussian inte-
grals.
The cumulative distribution function N d( )  is defined by 
the Gaussian integral:

 N d e dx( ) =
2
1
π
∫d x
−∞

− 2 /2 .  (24)

The use of Gaussian integrals in computing these proba-
bilities is critical to the Black-Scholes formula. It allows 
for the exact calculation of option prices under the as-

sumption of log-normal price distributions, demonstrating 
the deep connection between Gaussian integrals and fi-
nancial modeling.

3.4 Machine Learning: Gaussian Processes
Gaussian processes (GPs) are a powerful tool in machine 
learning, used for regression, classification, and other 
tasks where the goal is to predict unknown function values 
based on observed data. A GP is defined as a collection of 
random variables, any finite number of which have a joint 
Gaussian distribution. This property makes Gaussian inte-
grals central to the evaluation and prediction processes in 
GP models.
The core idea in GPs is to define a distribution over func-
tions:
 f x GP x k x x( ) ~ , , ,(µ ( ) ( '))  (25)

where µ (x)  is the mean function and k x x( , ')  is the co-

variance function. Given training data (X y, )  and a test 

point x* , the predictive distribution of the output f*  at x*  

is Gaussian with mean µ*  and variance Σ*  given by:

 µ* * * * * * *= Σ = −k X X K X X y k X X k X X K X X k X X( , , , , , , , .) ( )− −1 1( ) ( ) ( ) ( )  (26)
These expressions involve terms computed using Gaussian 
integrals. Specifically, the covariance terms are evaluated 
using the kernel function k x x( , ') , which often involves 

exponential functions of squared distances, closely related 
to Gaussian distributions. For example, if the kernel is the 
Radial Basis Function (RBF):

 k x x exp( , .') = −
 
  
 

(x x
2
−
l 2

')2

 (27)

The resulting covariance matrix and predictive mean/
variance computations involve multivariate Gaussian inte-
grals over the function space defined by this kernel. This 
approach allows GPs to make predictions with uncertainty 
quantification, providing not only mean predictions but 
also confidence intervals that are derived from the un-
derlying Gaussian distributions. In Bayesian inference, 
Gaussian integrals are used to update the posterior distri-
bution over functions given new data, making them essen-
tial for the practical application of Gaussian processes in 
machine learning.

4. Conclusion
The computation and application of Gaussian integrals 
underscore their pivotal role across various disciplines, 
including mathematics, physics, statistics, and finance. 
By delving into fundamental Gaussian integrals such as 

 
 
 
∫∞ −
−∞ e dxx2

 and their extended forms like  
 
 
∫∞ −
−∞ x e dxn x2

, one can discern how these integrals form the basis for 
key findings in multiple fields. For example, in quantum 
mechanics, Gaussian integrals provide a framework for 
analyzing path integrals in systems such as the quantum 
harmonic oscillator. In statistical mechanics, they are es-
sential for calculating the partition functions of ideal gas-
es, linking microscopic states to macroscopic thermody-
namic properties. Moreover, financial models like Black-
Scholes utilize Gaussian integrals to determine option 
prices; likewise, in machine learning, Gaussian processes 
rely on these integrals for precise predictive modeling. 
The consistent presence of Gaussian integrals across dis-
ciplines underscores their universality and offers robust 
methods for addressing complex analytical challenges in 
both theoretical studies and practical applications. Fur-
thermore, it is worth noting that the versatility of Gaussian 
integrals extends beyond traditional scientific domains. 
Their influence permeates diverse areas such as signal 
processing where they are employed in image recon-
struction algorithms or even in engineering applications 
involving control theory. In conclusion, the ubiquitous 
nature of Gaussian integral highlights its significance not 
only within established academic realms but also within 
emerging interdisciplinary fields where its utility contin-
ues to be harnessed.
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