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Abstract:
This article explores the development of flow field models in steady-state environments utilizing Euler equations and 
potential flow equations, with verification processes conducted using Python. The models demonstrate stability and 
high accuracy in low-velocity scenarios, capturing essential dynamics effectively. However, as the conditions transition 
to supersonic speeds, the models begin to exhibit increased errors. This discrepancy highlights the challenges faced in 
simulating high-speed aerodynamics accurately. The research underscores the importance of improving model fidelity 
in diverse Mach regimes, particularly in supersonic conditions where traditional methods struggle. Future research 
directions identified include the development of unsteady flow field models, which are crucial for dynamic analyses, 
optimization of grid structures for three-dimensional complex fields to improve computational efficiency, and the 
creation of extensive model libraries. These advancements aim to enhance the accuracy, reliability, and practicality of 
flow field simulations, extending their applicability in both academic studies and industry applications, particularly in 
aerospace engineering where precise flow modeling is critical.
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1. Introduction
Computational Fluid Dynamics (CFD) has evolved sig-
nificantly since its inception, undergoing extensive trial 
and error, refinement, and validations. The discipline 
made early strides in 1973 when the CFD group at Impe-
rial College London began a project aimed at predicting 
simple shear flows, free and confined jets using the stream 
function-vorticity solution algorithm. This initial work led 
to the development of the SIMPLE semi-implicit solution 
algorithm that simplified the Navier-Stokes momentum 
equations using velocity and pressure as primary variables 
[1-4]. Over the years, CFD technology has expanded to 
include complex, high-dimensional problem-solving ca-
pabilities, along with applications in diverse fields such as 
hemodynamics and wind tunnel system design [5-7].
Research Problem: Despite advancements, CFD tech-
nology continues to confront significant challenges that 
impede its broader application and effectiveness. These 
include computational limitations on hosts, inadequate 
computational modeling of discretized flow fields, and 
difficulties in managing irregular boundaries and wall 
conditions with simple orthogonal grids. Other issues en-
compass slow convergence, numerical diffusion, and chal-
lenges related to performing complex three-dimensional 

geometric operations and time-related computations [8]. 
These challenges highlight the need for further develop-
ment and refinement of CFD methodologies to enhance 
their accuracy and applicability across various scientific 
and engineering domains.
This Paper’s Contribution: This article embarks on an 
exploration of discrete flow field model construction us-
ing Euler’s equations and the potential flow equations, 
demonstrating the construction and validation of flow field 
models under various sound speeds in steady environ-
ments using Python. The study aims to establish the basic 
consistency and feasibility of the models employed, and 
also verifies the correctness of these basic models through 
MATLAB software employing the vorticity stream func-
tion method [1-4]. By addressing the complexities of 
model construction and the intricacies of computational 
fluid dynamics, this work contributes to the ongoing en-
hancement of CFD capabilities, paving the way for more 
accurate and practical applications in fields that require 
precise fluid dynamics simulations.

2. Methodology
Navier-Stokes equations (N-S equations) derived from the 
Euler equations [9].
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Considering the stability of the flow field and constant 
temperature, the equation is simplified to a simple conti-
nuity equation with boundary conditions.
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There are many methods for grid selection and optimi-
zation. In addition to the basic vertical coordinate grid 
division, the grid can be specifically divided according 
to the geometric shape of the boundary conditions of the 
specific research flow field or the shape of the test model 
in the flow field, such as the commonly used rectangular 
grid, quadrilateral grid, triangular grid, etc [10]. Consid-
ering that the basic characteristics of the simulated flow 

field model do not require a large amount of calculation 
for irregular model grid division, the discrete grid division 
adopts the traditional coordinate grid method, which can 
maximize the speed and stability of operation, and also 
provide a theoretical basis for unit model research such as 
flexible pipe flow field model construction.
In order to consider the different requirements of dis-
cretized difference schemes in subsonic and supersonic 
environments, as well as the continuity requirements in 
transonic flow fields, this article adopts a combination of 
forward difference and central difference methods to con-
struct partial differential equations, and gives multiple fea-
sible transition coefficients to meet the needs of transonic 
flow fields, and provides a variety of different coefficient 
μ value methods, comparative verification results.
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Furthermore, considering the total potential energy equa-
tion for steady flow.
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The flow field model and corresponding parameters under 
the corresponding state can be obtained. Among them, H0  

is the stagnation enthalpy, and c  is the speed of sound. 
For cases where Ma >1 , the original partial differential 
equation

 (ρϕ ρϕx y)x + =( )y
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Make changes in coefficient
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3. Results and Analysis
3.1 Poisson Equation
Set the B.C. as follows.
 f x cos x x( ) = − < <β π( ( 1 ,1 2))  (11)
As for coefficient of the upwind and center differential 
equation µ , there are 3 definitions: 
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The figure 1 is after 3000 steps.

Fig. 1 Simple stable flow with Ma = 0.8 and µ µ= 2  (the error comes to 9.078537206574691e-10) 
(Photo credit: Original).

Fig. 2 Simple stable flow with Ma = 2.5 and µ µ= 2  (the error comes to 0.004923203387689582) 
(Photo credit: Original).

Fig. 3 Special condition of simple stable flow ( Ma = =2.5,µ µ2 , the initial potential of two 
cavities is 0) (Photo credit: Original).
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As show in the fig.1 to the fig. 3. It is clear that under 
low-velocity flow conditions, the flow field tends to be 
stable; when the Mach number increases to supersonic, 
although the flow pattern in the flow field is basically con-
sistent, the stability of the flow field significantly decreas-
es and the computational error rapidly increases.

3.2 Full Potential Equation
Set similar conditions and analyze the flow field using the 
total potential function, taking subsonic speed as an exam-
ple. As show in the fig. 4.

Fig.4 Stable flow by full potential equation ( Ma = =0.6,µ µ3 ) (the error comes to 
4.741577501003272519e-17) (Photo credit: Original).

The results obtained are similar to the experimental results 
mentioned earlier, with the flow field being more stable 
and the errors smaller. After improving the code, more in-

tuitive visualizations were obtained through plotting with 
MATLAB software. As show in the fig. 5.

Fig. 5 Colored graph of the flow (have difference in the length of frame) (Photo credit: 
Original).
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4. Future Improvement Ideas
The construction of basic models for simple flow fields 
not only provides theoretical support for further scientif-
ic research but also reveals many potential and feasible 
directions for further research. These include the con-
struction of basic models for unsteady flow fields or spe-
cial fluids (such as Newtonian fluids), basic modeling of 
three-dimensional simple or complex fields, reduction and 
optimization of errors (such as high-order discrete equa-
tions), and exploration of grid construction and models 
for flow fields with commonly used complex geometric 
shapes or boundaries. These research directions are highly 
prospective and practical. Additionally, considering the 
increasing demand for larger models and the contradiction 
between insufficient computing power, accuracy, and the 
lack of advanced software, a model library for basic flow 
field models is needed in the field of fluid mechanics.

5. Conclusions
This article has successfully developed a foundational 
model for simple flow fields, utilizing Euler equations and 
potential flow equations to construct flow field models 
across various sonic speeds within a steady environment. 
The research thoroughly examines the computational 
complexities and trends exhibited by different flow fields, 
effectively demonstrating the basic consistency and fea-
sibility of the developed models. Findings indicate that 
in low-velocity conditions, the flow field remains stable, 
while in supersonic conditions, despite a general consis-
tency in flow patterns, there is a noticeable decrease in 
stability and an increase in computational errors.
Several promising avenues for future research have been 
identified to enhance the scope and efficacy of current 
flow field modeling techniques. There is a critical need to 
explore unsteady flow fields to understand dynamic fluid 
behaviors better. Additionally, the modeling of special flu-
id flow fields could provide insights into less conventional 
and more complex scenarios. Optimizing grid construc-
tion and refining the models for three-dimensional com-

plex fields are essential steps toward improving the accu-
racy and practicality of the models. These advancements 
will not only address the current limitations observed in 
supersonic conditions but also broaden the applicability 
of computational models in both academic research and 
practical engineering contexts.
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