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Abstract:
This paper presents a numerical simulation study of subsonic and supersonic nozzle flow regimes utilizing the 
Small Disturbance Equation (SDE), implemented through Python to analyze flow stability under various boundary 
conditions. The SDE, extensively applied in aerospace, meteorology, and fluid mechanics, offers a critical framework 
for examining aircraft stability and maneuverability, essential for ensuring flight safety. Additionally, its application 
extends to spacecraft stability and control in aerospace science. The findings from this study reveal that subsonic 
flows, characterized by their stability and smoothness, respond more predictably under varying boundary conditions 
compared to their supersonic counterparts. Conversely, supersonic flows demonstrate increased sensitivity to changes in 
boundary conditions, resulting in more complex flow patterns. This sensitivity underscores the need for precise control 
mechanisms in supersonic applications to maintain flow stability and ensure the safety and efficiency of aerospace 
operations. The simulations underscore the practical importance of the SDE in advancing the understanding of dynamic 
flow problems across different scientific and engineering disciplines.
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1. Introduction
Subsonic and supersonic nozzles are integral to advanced 
applications in aerospace engineering and aerodynamics, 
controlling fluid speed and pressure to achieve precise 
functional outcomes [1]. The kinetic energy transferred 
through the nozzle’s internal design accelerates fluids, 
increasing their velocity and kinetic energy. This acceler-
ated fluid experiences a decrease in velocity upon exiting 
the nozzle due to the conservation of kinetic energy, trans-
forming kinetic energy back into pressure energy or other 
energy forms [2]. In aerospace, nozzles are crucial for jet 
and rocket engines, facilitating the acceleration of gases 
from combustion chambers to generate thrust [3][4].
Current Research Status: Nozzles also find critical appli-
cations in the energy sector, including in gas and steam 
turbines in the power generation industry, where they 
manage fuel and steam flow to enhance energy conversion 
efficiency [5]. Similarly, in nuclear reactors, nozzles con-
trol coolant flow, ensuring reactor operational safety and 
efficiency. The Small Disturbance Equation (SDE) plays a 

pivotal role in flight science, particularly in assessing the 
stability and maneuverability of aircraft. This equation, 
which presupposes minor perturbations in velocity fields, 
offers a simplified yet effective tool for analyzing flow 
disturbances [6][7]. The SDE’s utility extends beyond 
complex equations like Navier-Stokes, providing reliable 
flow behavior predictions without extensive computation-
al demands [8].
The focus of this study involves applying the Small Dis-
turbance Equation to explore nozzle flows under various 
flow regimes, specifically subsonic and supersonic con-
ditions. Python is utilized to solve the SDE, allowing for 
precise calculations of fluid streamlines under different 
boundary conditions. This approach facilitates a deeper 
understanding of the dynamics at play within different 
nozzle applications, emphasizing the behavior of fluid 
flows in both subsonic and supersonic scenarios. The ex-
ploration of these dynamics provides critical insights into 
the operational efficiencies and potential optimizations of 
nozzle designs used in high-demand aerospace and energy 
applications.
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2. Research Methods and Processes
2.1 Theoretical Framework
In this study, a mathematical model was first constructed 
based on the Small Disturbance Equation, tailored to the 
specific geometry of the nozzle. Under the assumption of 
small flow disturbances, this equation simplifies the analy-
sis of flow characteristics within the nozzle. Different flow 
velocities, including supersonic and subsonic, along with 
varying boundary conditions, were considered to ensure 
the comprehensiveness and accuracy of the analysis.
The Navier-Stokes Equations:
The Energy Equation.   

 ∂
∂
ρ
t

+diν (ρU ) =0 (1)

The Momentum Equation.
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The Continuity Equation.   
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The three fundamental formulas in fluid mechanics, often 
known as the continuity equation, represent core princi-
ples:
Conservation of Mass: This principle asserts that the mass 

within a system moving with the fluid remains constant. 
The continuity equation for mass conservation can be de-
rived using the divergence theorem, which plays a crucial 
role in fluid mechanics by converting volumetric integrals 
into surface integrals [9]. This conversion significantly re-
duces the computational burden, facilitating more efficient 
calculations in practical applications.
Application of the Divergence Theorem in One Dimen-
sion: In one-dimensional systems, the divergence theorem 
takes a discrete form. This is represented in a staggered 
grid where U is positioned at one edge of a vertical unit 
and V at a horizontal edge. Through this discrete diver-
gence operator, internal contributions negate each other, 
isolating only the boundary terms. This simplification 
underscores the theorem’s utility in reducing complex 
calculations to more manageable boundary-focused evalu-
ations.
Conservation of Energy: Defined as the total of internal 
and kinetic energies, energy conservation is influenced by 
the work done by surface forces and heat flux. The energy 
equation, derived via the divergence theorem, embodies 
this principle. It illustrates how energy changes within a 
system are influenced by the interaction of surface forces 
and heat flow.
The Euler Equations.
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A simplification of the full potential equations is done in 
the case of thin obstacles, such as thin airfoils. The discus-
sion to 2D. Since the obstacle is “small” it’s effect on the 
flow is small and consider perturbation to uniform flow 
with velocity of magnitude U∞  in the x-direction. The 

potential has a representation φ= U x∞ ( +Φ) .
Where velocities are recovered from the potential using 
the formulas.
 u= U∞ (1+Φ x )    ν= U∞Φ y  (5)

The equation becomes (1 0− Φ +Φ =M x xx yy
2 ) which can 

be simplified further to:

 (1 0− Φ +Φ =M∞
2 ) xx yy  (6)

The wall BC becomes ν= (U u x U x∞ ∞+ ≈)f f ( ) ( ) where 

f(x) is the shape of the airfoil.
These equations need to be supplied with a domain, 
boundary conditions, initial conditions. For stationary 
problems set time derivative to 0.

2.2 Boundary Condition Settings
To explore the impact of various boundary conditions 
on flow dynamics, different scenarios were established, 
featuring varied inlet velocities and outlet pressures in a 
nozzle setup. Simulations were conducted across both su-
personic and subsonic flow regimes, with adjustments to 
boundary conditions tailored to assess their effects on the 
flow field. The boundary conditions were also modified 
to correspond with the shape of the obstacle to better suit 
the flow characteristics. The Successive Over-Relaxation 
(SOR) method was employed, effectively reducing the 
error incrementally through each iteration of the equation. 
This approach helps in achieving a more accurate repre-
sentation of flow behavior under diverse conditions.

2.3 Numerical Simulation
For the numerical solution, Python was utilized to solve 
the Small Disturbance Equation (SDE). Originally devel-
oped for turbomachinery applications, the SDE Computa-
tional Fluid Dynamics (CFD) has been extended to exter-
nal aerodynamics. The Reynolds averaged Navier Stokes 
(RANS) equation was also addressed using SDE CFD to 
tackle related issues, enhancing the precision and speed 
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of the Doublet-Lattice Method, especially for complex 
devices. This is achieved through the use of linearization 
techniques to reduce simulation costs. For instance, when 
compared to the Navier-Stokes (NS) method alone, the 
computation time for the small disturbance NS method is 
significantly reduced, by up to half of an order of magni-
tude [10].
The SDE method’s growing refinement facilitates its 
application to numerous practical engineering problems, 
including the calculation of dynamic stability derivatives 
and the research into aeroelastic and aeroservoelastic be-
haviors, as well as the creation of reduced-order models.
In coding, a five-point difference scheme was employed 
to discretize the equation. By calculating the error and 

optimizing iteratively, the error was reduced to (10−6 )
, achieving higher accuracy. To begin solving the small 
disturbance equation, it is first necessary to discretize it 
due to the complex nature of the direct solution process. 
The divergence theorem is crucial in this step as it trans-
forms a body integral into a surface integral, simplifying 
the computational effort significantly. In one-dimensional 
applications, the theorem adopts a discrete form, repre-
sented by a staggered grid where U and V are positioned 
at opposite edges of a unit cell. This discrete divergence 
operator reveals that all internal contributions negate each 
other, leaving only the boundary terms to be considered.
By employing the finite difference method, the equation 
was discretized and then solved iteratively. Special at-
tention was given to the influence of boundary condition 
changes on the results, with multiple simulations conduct-
ed under different initial and boundary conditions to gen-
erate corresponding streamline diagrams.

3. Results and Analysis
3.1 Subsonic Flow Results
This image represents the streamlines of subsonic flow 
within the nozzle. The streamlines are relatively uniform 
and parallel, indicating stable and smooth flow throughout 
the region. This suggests that the subsonic flow is stable 
and well-behaved, with no significant shocks or discon-
tinuities. This is a typical characteristic of subsonic flow, 
where the Mach number is less than 1, and the flow is pri-
marily incompressible. As show in the fig.1.

Fig. 1 Subsonic Boundary 1 (Photo credit: 
Original).

This image displays the streamlines of subsonic flow un-
der a different boundary condition. It is evident that the 
streamline pattern shows significant changes near the inlet 
and outlet, which may indicate higher velocity gradients 
or pressure changes in these regions. As show in the fig.2.

Fig. 2 Subsonic Boundary 2 (Photo credit: 
Original).

3.2 Supersonic Flow Results
This image shows the streamlines of supersonic flow. 
The streamlines exhibit more curvature and compression, 
particularly near the centerline, indicating the presence of 
shock waves or compression regions. In supersonic flow, 
the Mach number is greater than 1, leading to compress-
ibility effects and shock formation. As show in the fig.3.
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Fig. 3 Supersonic Boundary 1 (Photo credit: 
Original).

The vector plot indicates that the flow is experiencing 
significant disturbances, possibly due to the interaction 
of shock waves with boundaries or other flow features. In 
such cases, even small changes in conditions can lead to 
large variations in the flow field. As show in the fig.4.

Fig. 4 Supersonic Boundary 2 (Photo credit: 
Original).

3.3 Comparative Results and Analysis
Subsonic Flow: The results for subsonic flow indicate 
stable, smooth flow with slight variations depending on 
boundary conditions. This aligns with the expected behav-
ior for flows with a Mach number less than 1.
Supersonic Flow: The supersonic flow results highlight 
the complexity and sensitivity of such flows to boundary 
conditions, with evident shock formations and significant 
variations in the flow field.

4. Conclusion
This study has successfully employed the Small Distur-

bance Equation to analyze and simulate the dynamics of 
subsonic and supersonic flows using Python, demonstrat-
ing the equation’s effectiveness in delineating the distinct 
behaviors of fluids under varying boundary conditions. 
The analysis reveals that subsonic flows exhibit greater 
stability and smoothness, whereas supersonic flows re-
spond with increased sensitivity and complexity to chang-
es in boundary conditions. These results underscore the 
utility of the Small Disturbance Equation in capturing es-
sential flow characteristics across different speed regimes, 
facilitating a deeper understanding of fluid dynamics in 
practical applications.
Limitations of the Study: Despite the successes highlight-
ed, the study acknowledges several areas requiring further 
improvement. The simulation results indicate the presence 
of complex vortical structures and significant non-unifor-
mities in the flow field, particularly in supersonic condi-
tions. These anomalies may suggest potential numerical 
instabilities or challenges in physical modeling that need 
addressing. To enhance the model’s accuracy and physical 
realism, future efforts could focus on optimizing boundary 
conditions, increasing grid resolution, and refining nu-
merical methods. Additionally, it is crucial to monitor and 
minimize error metrics consistently throughout simula-
tions; unresolved errors can compromise the reliability of 
the flow visualizations, making the streamlines potentially 
misleading. Optimizing these elements will strengthen the 
model’s predictive capabilities and improve its applicabil-
ity in engineering and aerodynamics.
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