
1

Dean&Francis

Analysis of the Weighted Graph Shortest Path Problem:
 Algorithms, Applications, and Challenges

Chaofan Huo

Abstract:
In this paper, I will integrate what I have learned in the course to systematically review the concepts, challenges, and
solutions involved in the shortest path problem. I will also introduce the applications and solutions of distributed
algorithms to this problem. Moreover, based on the article ‘Distributed Approximation Algorithms for Weighted
Shortest Paths’ that I have read, I will introduce the solutions for the single-source shortest path problem (SPP) from my
understanding.
Keywords: Weighted Graph, Shortest Path Problem, Approximation Algorithms

1. Introduction
The shortest path problem is a fundamental concept in
graph theory, designed to determine the most efficient
route between two given points within a graph. Beyond
its significance in graph theory and algorithm design, this
problem is pivotal in numerous industrial applications.
From optimizing navigation routes and simulating traffic
scenarios to analyzing social networks, the need to swiftly
compute the shortest paths amidst vast data points is a
common challenge.
As technology progresses, we face an exponential
growth in data scale, rendering once-adequate algorithms
insufficient in meeting today’s demands for speed and
efficiency. Additionally, the complexity of data topology
has increased with the advent of dynamic and time-
dependent graphs, further complicating the shortest path
problem. There is also a growing need for more efficient
computations to address the surge in computational tasks.
Research in the shortest path problem field is ongoing,
with continuous advancements in computer technology
leading to the proposal of new algorithms and the
exploration of a wider range of problems (Sun et al.,
2009). Based on my interpretation of the article, current
research in this area largely revolves around three major
trends:
More Efficient Serial Algorithms: To enhance the
efficiency of serial algorithms, the academic community
has introduced a technique known as preprocessing.
Preprocessing involves a two-stage approach, with an
offline computation phase that generates auxiliary data and
an online query phase that utilizes this data to significantly
improve real-time algorithm performance.
Approximation Algorithms: In contemporary computer
science, approximation algori thms have gained

importance. These algorithms provide results that may not
be optimal but fall within an acceptable range, all while
consuming fewer resources than exact solutions. This
concept is particularly valuable in practical applications
of graph theory, where obtaining exact path distances is
unnecessary. For instance, well-approximated distances
can be acceptable in traffic route planning due to factors
like traffic signals and tracking errors.
Parallel and Distributed Computing: With the rapid
advancement of hardware technology, software can be
optimized to leverage the latest hardware, improving
computational efficiency. Traditional single-threaded
methods can be enhanced directly, but multi-core CPUs
and GPUs require the design of algorithms tailored to their
hardware capabilities. Parallel and distributed computing
technologies have emerged to efficiently harness hardware
for computation, resulting in higher efficiency.
Key considerations to implement parallel and distributed
algorithms include algorithm design for parallelism,
effective inter-process communication, and addressing
the challenges associated with debugging and analyzing
parallel programs.
This introduction sets the stage for the subsequent
sections, where we will delve into models, problem
definitions, types, and commonly used algorithms for
addressing the shortest path problem.

2. Network Model
Consider an undirected, unweighted graph G with n
nodes and m edges, representing the connectivity between
processors. Nodes in the graph represent processors, and
edges represent finite bandwidth links connecting these
processors. We use the symbolV G  to denote the set of
nodes in graphG, and E G  represents the set of edges

2

Dean&Francis

(Danupon, 2014).
Node Characteristics
Each node has a unique ID, ranging from {1 2 ()}, ,..., poly n ,
and they possess unlimited computational power. The
topological knowledge of each node is limited; it only
knows the IDs of its neighboring nodes but doesn’t have
information about other topological details, such as
whether its neighbors are directly connected. Additionally,
nodes can receive additional inputs depending on the
problem at hand.
Edge Weights
For graph problems, additional input is the weight
assigned to each edge. We use the funct ion w:
E G , ,..., poly n  {1 2 ()}to represent the assignment of
edge weights. The weight w uv  of each edge uv in the
weighted network ()G,w is known only to nodes u and v
. Typically, we assume that the maximum weight does
not exceed poly n , allowing each edge’s weight to be
communicated in one round.
Performance Metrics
One of the metrics used to analyze algorithm performance
is runtime, defined as the number of rounds required
for distributed communication in the worst case. In
each round, all nodes are simultaneously awakened.
Subsequently, each node u sends arbitrary messages of lo
ng bits through each edge uv, reaching node v by the end
of the round.
Assumptions and Knowledge
We assume that nodes always know the current round
number, and for symbol simplification, we use node
IDs to identify them. The analysis of runtime is based
on the number of nodes n, the number of edges m,
and the diameter D of graph G. We also assume that n
and a 2-approximation of D can be computed in O(D)
time. Finally, we introduce the concept of “with high
probability” (w.h.p.), indicating that an event occurs with
a probability of at least1 1 / nc, where c is any constant
greater than 1.

3. Problem Definition
3.1 Shortest Path Problem
In the aforementioned model, we have introduced
various concepts and problem definitions. For any nodes
u and v, a u-v path, denoted as p, can be represented
as    u x ,x , ,x v0 1 l , where for all i, xi and xi1belong
to E G . For any weight allocation w, we define the

weight or distance of Pas w P w x x  l
i i i 
1

0 1(). Let

P u,vG ()represent the set of all u v paths in G. We use

dist u,vG,w()to denote the distance from u to v in ()G,w ;
that is,D u,v min dist u,v   u ,v G,w . Path P is the shortest
u v path in()G,w .
When discussing properties of the basic undirected,
unweighted network G, we will omit the representation
of w. Therefore, distG u,v()is the distance between u and
v in G, and D G is the diameter of G. We often refer
to D G  as the “hop diameter” and sometimes simply
as the “diameter.” This paper refers to D G,w() as the
“weighted diameter.” When it is clear from the context,
we use D to represent D G . We emphasize that, like
other papers in the literature, the term D appearing in our
algorithm runtime refers to the diameter of the underlying
unweighted network G. This helps eliminate confusion
and ensures that readers understand that the diameter used
in the algorithm analysis refers to the diameter of the
unweighted graph.
Subsequently, we define the following tasks that require
algorithms to be solved on the graph.
Single-Source Shortest Path Algorithm
The Single-Source Shortest Path Problem is fundamental
in graph theory and network analysis. It aims to find
the shortest path from a single source vertex to all other
vertices in a directed or undirected weighted graph.
Input: The input consists of a directed or undirected
graph G V ,E(), where V represents the set of vertices and
E represents the set of edges and a source vertexs V
from which we want to find the shortest paths to all other
vertices.
Output: The desired output includes:
Shortest Path Distances: For each vertex v V , the shortest
distance d s,v()from the source vertex s tov.
Shortest Paths: For each vertex v V , a list of vertices
that comprise the shortest path from s to v.The result of
solving the Single-Source Shortest Path Problem is a
collection of shortest path distances and shortest paths
from the source vertex s to all other vertices in the graph
G.
Point-to-Point Shortest Path Algorithm
The Point-to-Point Shortest Path Algorithm focuses on
finding the shortest path between two specific vertices in a
directed or undirected weighted graph.
Input: The input consists of a directed or undirected
weighted graph G V ,E(), where Vrepresents the set of
vertices, E represents the set of edges, and two specific
vertices: a source vertex s V and a target vertex t V , for
which we want to find the shortest path.
Output: The desired output includes:
The shortest path distance d s,t() from the source vertex s

3

Dean&Francis

to the target vertex t.
The shortest path is a sequence of vertices that constitute
the shortest path from s to t. These algorithms, when
applied, yield the shortest path distance d s,t()between
the source vertex s and the target vertex t, along with the
sequence of vertices constituting the shortest path.
Multi-Source Shortest Path Algorithm
The Multi-Source Shortest Path Algorithm focuses on
finding the shortest paths from multiple source vertices
to all other vertices in a directed or undirected weighted
graph.
Input: The input consists of a directed or undirected
weighted graph G V ,E(), where V represents the set of
vertices, E stands for the set of edges, and a specific set of
source vertices S, with each source vertex si belonging to
V.
Output: The desired output for each source vertex si
includes:
The shortest path distance d s ,t()i j to every target vertex t j.
The actual shortest path is a sequence of vertices from si
to t j.
When applied, these algorithms provide the shortest
path distance d s ,t()i j from each source vertex si to

every target vertex t j, accompanied by the sequence of
vertices constituting the shortest path. This algorithm is
often employed in scenarios requiring network analyses
from multiple starting points to all other nodes, such as
telecommunication and transportation networks.

3.2 Parallel Computing Problem
Parallel computing is an approach where multiple tasks
or computations execute simultaneously, optimizing the
use of computer resources to solve problems faster than
a single-core CPU. This technique typically involves
dividing a larger problem into smaller sub-problems that
can be processed concurrently, typically using multiple
processors or computers (Christian, 2012). The principle
behind parallel computing is based on the idea that large
problems can often be divided into smaller ones, which are
then solved concurrently (“in parallel”). While the concept
seems straightforward, implementing parallel computing
is complex due to challenges like data dependency, task
scheduling, and ensuring synchronization among parallel
tasks. Data dependency refers to situations where one task
depends on the output of another, making it challenging to
execute them concurrently. Task scheduling, on the other
hand, involves determining the order and assignment of
tasks to different processors to optimize performance.
Lastly, synchronization ensures that all parallel tasks
progress harmoniously, avoiding conflicts and ensuring

accurate results. Despite these challenges, the potential
benefits of computational speed and efficiency make
parallel computing essential in modern high-performance
computing and various applications like scientific
simulations, data processing, and artificial intelligence.

3.3 Distributed Graph Computing Problem
Solving the shortest path problem in a distributed
environment is often more complex than in a single-
machine environment. This is because data (vertices and
edges) is distributed across multiple nodes, requiring
algorithms to perform local calculations and engage in
frequent information exchange across nodes (Christoph
and Boaz 2013). Distributed graph computing can be
divided into three main steps: data partitioning, local
computation, information exchange, and convergence
assessment.
3.3.1. Data Partitioning

Data partitioning involves distributing the graph’s
data (typically vertices and edges) among multiple
computational nodes. This can be done randomly or based
on a strategy, such as ensuring that certain vertex sets or
subgraphs are located on the same computational node to
reduce inter-node communication.
3.3.2. Local Computation and Information Exchange

Local computation and information exchange refers
to each computational node independently performing
local calculations on the data it possesses. For example,
computing the shortest path from a vertex to its neighbors.
Subsequently, these nodes exchange information, such as
distance updates, to ensure that all nodes have complete
and up-to-date path information.
3.3.3. Convergence Assessment

Convergence assessment implies that all computational
nodes continuously iterate their computations and
information exchange until the algorithm converges on all
nodes, meaning there are no more path updates.
3.3.4. Major Challenges in Distributed Graph Computing

Distributed computing faces several primary challenges,
including communication overhead, data imbalance, and
fault recovery:
Communication Overhead: frequent inter-node information
exchange can lead to significant communication overhead,
especially when dealing with large graphs or limited
network bandwidth.
Data Imbalance: data in the graph may be unevenly
distributed among nodes, leading to some nodes being
heavily loaded with computations while others may
remain idle.

4

Dean&Francis

Fault Recovery: in a distributed environment, computational
nodes may experience failures. Mechanisms must be
designed to detect these failures and recover from them
to ensure the correct completion of the shortest path
algorithm.

4. Single-Source Shortest Path Matching
Algorithms on General Networks
In this section, I will focus on the Single-Source Shortest
Path Matching problem and introduce a detailed method
for General Networks.

4.1 Algorithms on General Networks
This type of network is often referred to as “landmarks”
or “skeletons” (e.g., [3,4]). Generally, the overlay network
G' is a virtual network consisting of nodes and logical
links built on top of the underlying network G. In other
words, V G' V G   , and an edge in G' (referred
to as a “virtual edge”) corresponds to a path in G. Its
implementation is typically abstracted as a routing scheme
that maps virtual edges to underlying routing. However,
this paper does not need to delve into the specific routing
schemes mentioned in the literature. We need to focus
on the concept of “hopstretch” mentioned therein, which
captures the number of hops between two adjacent virtual
nodes in V G' within G.
Definition 1 Overlay Network with Hopstretch Factor λ
Consider a network G. For any λ, a weighted network
(G',w') is referred to as an overlay network with a
hopstretch factor λ. This overlay network must satisfy the
following two conditions:
1. V G' V G   
2. distG u,v()  λ for every virtual edge uv E G'  , and
for every virtual edge uv E G'  , both u and v (as a node
inG knows the value of w' uv . 
This definition introduces the concept of the hopstretch
factor λ, which describes the relationship between the
number of hops between virtual nodes in the overlay
network G^’ and the distances between actual nodes in the
base network G. This factor plays a crucial role in solving
the Single-Source Shortest Path Matching problem in a
distributed environment.
Theorem 2 Main result of this Section: Reduction to an
overlay network.
For any weighted graph ()G,w , source node s, and integer

α, there is an O n / D

()α α  -time distributed algorithm

that embeds an overlay network (G',w') in G such that,
with high probability,

1. s V G'  ,

2.|V G' | O() 

α, and if every nodeu V G  knows a

(1 (1))o -approximate value of distG',w'(s ,v) for every node

v V G'  , then u knows the (1 (1)o)-approximate value

of distG',w'(s ,v)
Lemma 3 Bound on the number of hops between two
landmarks in a path.
For any i i nlogn /j j 1 α, with probability at least
1 2 βn , for some constant β  0 and su ffi ciently large n.
Fact 4 Ullman and Yannakakis [5]
Let S V G  be a random set of vertices. Then the
probability that a given simple path has a sequence of
more than cnlogn / S vertices, none of which are from S,
for any c  0, is, for sufficiently large n, bounded by 2βn

for some positive β.
Based on the lemma above, it can be inferred that u is
aware of dist u,vG,w i()

1
. Furthermore, for any j 1, the

edgev vi j1 exists in the overlay network G' with a weight

of w'(v v)i j1 , and this holds with a likelihood of no less
than 1 2 βn. Therefore, in all likelihood,

dist (v ,s _ dist v ,vG ,w i G,w i i¡¯ ¡¯ 1 1


k

j



1

1

 j j 
Since u already knows dist ,vG,w Vi i()

j j1
, i t can now

compute

dist u,v dist v ,vG,w i G,w i i 1 1
k

j



1

1

 j j 
the distance is bounded below by dist u,sG,w  and capped
above by(1 (1))o dist u,sG,w . It’s essential to highlight
a particular point: in reality, u isn’t aware of which node
corresponds to v1, leading it to rely on the value of
min dist u,v dist u,sv V G'   G,w G,w   
as an estimate.

4.2 Algorithms Details
In the concluding phase of the sublinear-time Single
Source Shortest Path (SSSP) algorithm, the authors tackle
the SSSP on the overlay network ()G'',w'' that’s situated
within()G,w and was derived in the earlier section.
Remember, given the parameters α and β (which will be
defined later), the size of V G''  is proportional to α,
and the Shortest Path Diameter ofG'' with weight w′′ is
approximately proportional toα β/ .
Lemma 5 ((1 (1))o -approximate SSSP on())G'',w'' .

5

Dean&Francis

We can (1 (1))o -approximate SSSP on ()G'',w'' in

O(D(G) /)

α β α time.

In each iteration i of the given algorithm, the simulation
time is approximately O D G M(()) i , withMi being the
collective count of messages broadcasted by every node in
that round (Jeffrey et al.,1991). Broadcasting Mi messages
to all nodes across the network (not merely to neighboring
ones) demands a period of about O D G M(()) i . This
algorithm wraps up in roughlyO h  iterations. As a result,
the cumulative time required to run this simulation equates
to O hD G M(()) , with M representing the entire message
count broadcasted by all nodes throughout the algorithm’s
execution. Since this algorithm is designed for efficiency,
each node inG''only t ransmitsO log nmessages .
Consequently, M’s upper limit is roughlyO |V G'' |() 
|, which is approximately (()O α . Hence, the overall
runtime stands at O hD G(())α , which simplifies to
O D G /(())α β α , as initially asserted.

5. Conclusion
In this paper, I have introduced the fundamentals of the
shortest path problem, elaborating on the challenges
encountered in this context and reviewing potential
methods for addressing these challenges. Secondly, I have
presented a detailed overview of the models associated
with the shortest path problem. Thirdly, I have delved into
several sub-problems within the realm of the shortest path
problem, including single-source shortest paths, multi-
source shortest paths, point-to-point shortest paths, and
parallel computing. I have also explored the issues and
solutions in distributed graph algorithms, which I have
learned both in class and through self-study.
In the fourth section of the paper, I have described the
algorithms for solving the single-source shortest path

problem mentioned in the selected research paper. I have
provided my interpretation of these algorithms based on
my understanding, albeit with a simplified explanation due
to my limited background in graph theory and distributed
systems. Throughout the process of interpretation, I
have enhanced my comprehension of the paper and the
associated knowledge.
Acknowledgments
This paper is based on the content taught in Professor
Ghaffari’s “Graphs and Distributed Algorithm” course at
MIT. We would like to thank Professor Ghaffari for his
dedicated teaching and Teaching Assistant Yuelong Song
for their assistance.

References
[1] Sun G.Z., Zhang Z., Yuan J. 2009. An efficient pre-
computation technique for approximation KNN search in road
networks. In Proceedings of the 2009 International Workshop on
Location Based Social Networks (LBSN ‘09). Association for
Computing Machinery, New York, NY, USA, 41–44. https://doi.
org/10.1145/1629890.1629899
[2] Danupon N. 2014. Distributed approximation algorithms
for weighted shortest paths. In Proceedings of the forty-sixth
annual ACM symposium on Theory of computing (STOC ‘14).
Association for Computing Machinery, New York, NY, USA,
565–573. https://doi.org/10.1145/2591796.2591850
[3] Christian S. Shortest-path queries in static networks, 2012.
Submitted
[4] Christoph L., Boaz P. Fast routing table construction using
small messages: extended abstract. In STOC, pages 381–390,
2013
[5] Jeffrey D., Ullman., Mihalis Y. High-probability parallel
transitive-closure algorithms. SIAM J. Comput., 20(1):100–125,
1991. 20, 21

