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Abstract:
The phenomena of random walks are omniscient in nature. 
in this study, the author conducts an in-depth exploration of 
the properties of one, two, and three-dimensional random 
walks, emphasizing their interconnections. Through 
simulations of random walks across each dimension, the 
author carefully analyzes the displacement distribution 
and the mean squared displacement to classify the walks 
as either recurrent or transient. The results validate Pólya’s 
Recurrence Theorem, demonstrating that random walks 
in one and two dimensions are recurrent, meaning that the 
walker has a high probability of returning to the origin. 
In contrast, random walks in three dimensions tend to 
be transient, where the walker is less likely to revisit the 
starting point. These findings are essential in the broader 
context of understanding Brownian motion, particularly 
in nanoconfined environments like DNA, where random 
motion significantly impacts molecular behavior. This 
study helps provide insights into how spatial constraints 
influence random movements at the nanoscale level.

Keywords: Random walk; Pólya’s Recurrence Theorem; 
Brownian motion.

1. Introduction
This study will start to discuss the Pólya’s Recur-
rence Theorem, developed by Hungarian mathema-
tician George Pólya, and address the behavior of 
random walks in different dimensions. The theorem 
states that in one and two dimensions, a random 
walker is almost certain to eventually return to their 
starting point, making these walks “recurrent.” This 
means that if given enough time, the walker will 
revisit the origin with probability 1 [1]. However, in 
three or more dimensions, the probability of return-
ing to the starting point decreases as the dimensions 
increase, and the walk becomes “transient.” In these 

cases, the walker may continue to move away from 
the origin indefinitely, with a lower likelihood of re-
turning. Pólya’s Recurrence Theorem has profound 
implications in fields like physics and biology, par-
ticularly in understanding phenomena like molecular 
diffusion and Brownian motion. After introducing 
the preconditions from the Pólya’s Recurrence Theo-
rem this study starts talking about motion at different 
dimensions in specific cases to determine each one’s 
ability of returning [2]. Lastly, based on the above 
discussion, one can smoothly apply it to other disci-
plines such as Brownian motion in the biology field. 
The study will represent how do Markov chains play 
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an essential role in biology.
Pólya’s Recurrence Theorem is a significant conclusion of 
the study of random walks, particularly in the context of 
lattice-based random walks in different dimensions. The 
theorem provides idea that whether a random walker will 
eventually return to the starting point which is origin after 
an indefinite amount of time. Pólya’s Recurrence Theorem 
states that, in one or two dimensions, a simple random 
walk on an infinite lattice is recurrent which means that 
the probability that the random walker will eventually 
return to the origin is 1 certainly [3]. On the other hand, 
in three or more dimensions, the random walk is transient 
which means that the probability that the random walker 
will eventually return to the origin is less than 1 and this 
non-zero probability refers that the walker will never re-
turn the start point.
The rest paper is organized as follows. In Sec. 2, the au-
thor will present the Pólya’s Recurrence Theorem with 
details, and introduce the random walk in different dimen-
sions. In Sec. 3, the author will introduce the application 
of Brownian motion. Finally, the last Section is devoted to 
the conclusion.

2. Methods and Theory

2.1 Pólya‘s Recurrence Theorem
According to the Polya’s Recurrence Theorem, there is a 
theorem that the simple random walk on d  is recurrent 
in dimensions d =1,2  and when d≥3  d is transient. 
For instance, a walker has a probability of 1 of return-
ing to origin since it moves in2 . A runner, on the other 
hand, is less fortunate than a walker to return to its origin 
because it moves in 3 ,  meaning that the runner has a 
positive probability of never doing so [4].
Set a un  a probability that a random walk is at 0 after n  

steps for n≥0 . Notice that un =0 and at an even number 

of steps to be at 0 which means u u u1 3 5= = =…= 0.  Let 

fn  be the likelihood that a random walk will return to 0 

for the first time at step n for n≥1 , where is let f0 = 0

. Furthermore, let f f=∑
n

∞

=0
n then the probability of the 

random walk returning to 0 = f  and the probability of 
the random walk not returning to 0 which is reasonable 
equaled to 1− f  [5].
Breaking down each of the by taking into account the var-
ious times at which the random walk can first return to 0, 

or fi , showing that u f u f u1 0 1 1 0= + , u f u f u f u2 0 2 1 1 2 0= + +
, and
u f u f u f un n n n= + +…+0 1 1 0− #(1)

for arbitrary n . Each decomposition is modeled by f u0 n k−

, where the random walk first retuens returns after k steps 
and then in n k−  steps backs to 0, and the qualities can be 
obtained by repeating the above argument.
Let U s u u s u s( ) = + + +0 1 2

2
  and 

F s f f s f s( ) = + + +0 1 2
2
 , then, 

U s F s u f f u f u s f u f u f u s( ) ( ) = + + + + +0 0 0 1 1 0 0 2 1 1 2 0( ) ( ) 2

+…= −U s( ) 1, meaning that 1 (1 ( ))= −U s F s( ) . Iden-
tifying the requirements for transition and recurrence, 

I f u∑
n

∞

=0
n = ∞ , then f =1 refers that the random walk is re-

current. On the other hand, If∑
n

∞

=0
un < ∞ , then f < 1 refers 

to the transient random walk.

To prove this criterion, ∑
n

∞

=0
un = ∞  means that 

limU s
s→1

( ) = ∞ , so lim F s lim lim F s
s s s→ → →1 1 1

1 0, 1− = = =( )
U s

1
( )

( )  

which indicate that f =1  means the random walk is 

recurrent. In the end, ∑
n

∞

=0
un < ∞means that limU s

s→1
( ) < ∞

so lim F s lim
s s→ →1 1

1 0− = >( )
U s

1
( )

 infers lim F s f
s→1

( ) < <1( 1)  

means the random walk is transient.

2.2 The Cases of Random Walk
The random walk model’s basic idea is to traverse a graph 
beginning at one or more vertices. The walker has two 
probabilities at any given vertex in the graph: 1-P for 
moving to a neighboring vertex and P for randomly tele-
porting to any vertex. P is called the teleportation proba-
bility. Following every stroll, a probability distribution is 
produced, signifying the possibility of seeing every vertex 
within the graph. The next walk then uses this probability 
distribution as its input, and the cycle continues in this 
manner. This probability distribution will converge under 
specific circumstances, producing a stable distribution. 
Once convergence is achieved, a stable probability distri-
bution is obtained.
2.2.1 The Case of One Dimension

Firstly, in the case of one dimension, if 
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∑ ∑
i n

∞ ∞

= =1 1
f ui n= ⇔ =1 0 , then ∑

n

n

=1
u2n = ∞ . The total steps of 

the entire walk is [6]

	 u2n = =
 
 
 

2
n
n

n n
2 ! 1
! ! 2
n  

 
 

2n

� (2)

To calculate u2n , using the Stirling approxima-

tion to n!, n n! 2π  
 
 

n
e

n

  and changing u2n into 

that u2n =

 
 
 
2

2
n
2

n

n ,  

 
 

2
n
n

= ≅
(
n n
2 !
! !
n)

 
 
 

2 2π

2πn

n

 
 
 

 
 
 

n
2

2
n
n

n

2n

2

= =
e n n−2n

e n n

⋅ ⋅
−2n

2 2 2

⋅ ( 2π

π

)
(

2
(
)2 2n n

)2

(
n

) 2
π

2n

n
. Therefore, u2n   is 

represented that  u2n = ≅ =

 
 
 
2 2

2
n
2 2

n

n n

2
π

2n

n
π
1

n
. To deter-

mine whether the random walk in one dimension is recur-
rent or transient, deciding U (1)  is divergent or convergent 

so showing that U u(1) = ≅ = ∞∑ ∑
n n

∞ ∞

= =0 0
2n

1 1
π n

1
2

which 

represents the convergence. Thus, for one dimension, 

P u F( 0) 1 1 12n = = = − =( )
∞
1  which means it is recurrent.

2.2.2 The Case of Two Dimensions

Secondly, in the case of two dimension, according to 
the Polya’s Recurrence Theorem, known that if n is 
even the nth step probability is 0. In two dimensions, 
there is four different directions and without any bias 
the probability of each direction is the same which is 

u2n  =  
 
 

1
4

2n

. The number of return paths equals to 

x x n x n x! !( )!( )!
(
− −
2 !n)  so the total number of return paths 

equals to∑
x=

n

0 x x n x n x! !( )!( )!
(
− −
2 !n) .

To calculate the paths, it follows that

	 P2nthstepreturn =
 
 
 

1 1
4 ! ! ! ! !

2n

∑
x=

n

0 x x n x n x n(
(
− −
2 !n
)
)
( )

• � (3)

and simplifying this equation into 

P =  
 
 

1 ! !
4 !( )! !( )! ! !

2n

∑
x=

n

0 x n x x n x n n
n n
− −

• • (2 !n)  further simplifi-

cation is that  P  =  
   
 

1
4

2n    
   
   

2n n
n x∑

x 0

n

=

 

 

2

 [7]. After sort-

ing the initial one, the final equation is P =
 
 
 

 
 
 

2n
n 2

2
2n

2

 

which is equaled to (u2n )
2 . Also,  u2n   

 
 
 

n

1 1
1
2

2 = n
 

and notice, the  1
n

 here because the power of n is 1 it is 

divergent. There is a formula could be worked here is that

(a b a a b a b b+ = + +…+ +…+)n n n n r r n   
   
   1

n n− −2 2

r
� (4)

for n∈  where  
 
 

n
r

=
r n r! !(

n
−
!

)
 which could lead 

∑
x=

n

0

 
 
 

   
   
   

n n
x n

2

=
2

.

Because  (1+ x)2n  t h e  l e f t  hand  cou ld  be  wr i t -

t e n  i n t o  t h a t (1 1+ +x x)n n( )  w h i c h  e q u a l s  t o 

(   

0 0 1 1 1 1 1 1 0
n n n n1 1 ... 1 1x x x xn n n n n n+ + + +− − − )2

 b o t h 

have the same power 2 the initial one (1+ n)2n  equals to  

   

0 0 2 1 1 2 1 2 1 2 1 1 2 2 0
2 2 2 2n n n n1 1 ... 1 1x x x xn n n n n n+ + + +− − − .  F u r -

thermore, according to  

n n n n n
2 2n n1 x x= , for two dimen-

sions, P u 
 
 

2n = = ∞

n n

,∑
n

∞

=0

1 , 1 1− =
∞
1  which means it is 

recurrent.
2.2.3 The Case of Three Dimensions

Thirdly, in the case of three dimension there is six differ-
ent directions could be walked to so the number of walks 

that come back to the origin in 2n steps is  
 
 

1
6

2n

 because 

there is no bias that determine which direction will go to.
Let k represents the steps left or up into the board and j 
represents the right or down out of the board, j is the num-
ber of steps in (1,0,0) direction, k is the number of steps 
in (0,1,0) direction. Therefore, there are the preconditions 
that 0≤ j, 0 ,≤ + ≤k k j n and 2 2 2 2k j n k j n+ + − − =( )  

which there are n j k− −  steps walking in the direc-

tion (0,0,1) . The number of walks that return to the origin 
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in 2n steps is u2 , 0,n j k= 6−2n∑
j k n+ ≤

≥ ( j k n j k! ! !(
(2 !
− −

n)
) )2 . By 

sorting this equation getting that

	 u2n = 6−2n  
 
 

2n
n

j k n
j k
∑
+ ≤

, 0≥

 
 
 j!k! n j k !(

n!
− − )

2

� (5)

dividing 6  into 2× 3 and changing the position of 3, 

u2n = 2 3− −2n n 
 
 

2n
n

j k n
j k
∑
+ ≤

, 0,≥

 
 
 j!k! n j k(

n!
− − )

2

,  

 where there are 3n  such n letter strings, from 

∑
j k n
j k
+ ≤

, 0≥
3 1−n

j k n j k! ! !(
n
− −
!

)
= .

Continuously, it is possible to show that 

∑
j k n
j k
+ ≤

, 0≥

   
   
   
3 3− −n n

j k n j k j k n j k! ! ! ! ! !(
n n
− − − −
! !

)

2

≤max
( )

, from which it follows that 

u2n ≤2 max 3− −2n n 
 
 

2
n
n  

 
 j k n j k! ! !(

n
− −
!

)
. To solve this 

equation, using Stirling’s formula again, it is found that 

j k n j k! ! !(
n n n
− −
!

)
 

2 2 2π π πn n n j k     
     
     e e e

j k n j k j k n j kj k n j k n j k

2πn  
 
 

(

n
e

− −

n

) − − − −− − − −=
j k n j k! ! !( − − ) j k (

n

)
. 

It is the standard analytical exercise to determine that j  

and k  are equal as well as n j k− − ≈
n
3

, maximizing the 

value from above equation.

Assuming that n
3

 is integer for ease of computation. All 

in all, 
3 • • 3 • •3

max

− −n n n

 
 
 
3

n n n
3 3 3

−n

• •

j k n j k
n n
! ! !(

n
− −

     
     
     

!

n n n
3 3 3

n n n
3 3 3

)
n

=

= =
 
n n

 

where c is probably 3 3 . However, constant likely the 

purpose so u pt nn2n ≤ =2 0 2 •  •−2n ( \genfrac )   
n nπ

1
n n

3
2

 

which is also meaning that ∑ ∑
n n

∞ ∞

= =0 0
u2n = < ∞

n


3
2

 , indicating 

the divergence meaning that it is transient.

3. Brownian Motion and its Applica-
tions

3.1 Brownian Motion
Named for the botanist Robert Brown, who in 1827 made 
the first observation of the erratic movement of pollen 
grains suspended in water, Brownian motion is a basic 
idea in probability theory and stochastic processes. In a 
random walk, a particle takes steps in random directions 

at discrete time intervals. Each step is independent of the 
previous ones, and the overall position of the particle after 
many steps is determined by the cumulative effect of these 
random steps. Similarly, Brownian motion, also known as 
a Wiener process, models the movement of particles sus-
pended in a fluid, where the particle’s path is continuous 
and has continuous derivatives. Also, there are no jumps 
or discontinues in the path of the process. Then, the prop-
erties are characterized.
Firstly, the changes in position over non-overlapping time 
intervals are independent of each other. In other words, 
the position change from time t to t s+  is independent of 
the position change from time t' s'+ , provided that the 
intervals do not overlap. Secondly, the change in position 
over any time interval ∆t  follow a normal distribution 
with mean zero and variance proportional to∆t . Specifi-
cally, if X t( )  denotes the position at time t , then X t t( + ∆

) − ∆X t N t( ) (0,σ 2 ), where σ 2  is the variance parameter. 
Thirdly, the distribution of the increment over any given 
time interval is independent of the beginning point and 
solely dependent on the interval’s length. Finally, the 
length of the interval—rather than the starting point—is 
the only factor that affects how the increment is distributed 
over any given time period. Formally, a Brownian motion 

{W t t( ) , 0≥ }  could be defined as a stochastic process sat-

isfying: W (0 0,) =  W t W s N t s( ) − −( ) (0, ) for 0≤ <s t .

3.2 Application
The Brownian Motion could be used to support a discus-
sion that Conclusion- Dissecting the power spectral densi-
ty of the z position (Sz ) using a numerical approach based 
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on Kramers equations.
TA Brownian particle moving over a long period of time 
(diffusive motion) can also be described by the Kramers 
equation in the short term (inertial motion). IIt is assumed 
and physically expected that the probability density func-
tion will vanish at infinite distances from the source if 
people consider infinite geometries. However, if people 
take finite geometry into account, the circumstances may 
differ. However, points of interest in the present study 
(e.g., the understanding of Sz ) have not been addressed 
previously. Considering that a free particle in an arbitrary 
potential V(z) and has been applied to obtain the presence 
probability as Sz  from the FFT of the auto-correlation 
function (in the following Fig. 1) [8]. The dimensionless 
units used in the simulations are:
- Time t t/ unit  can be chosen arbitrarily

- Thermal velocity V k T mth b= ( / )0.5 (from the kinetic en-

ergy ½m Vth
0.5 = ½ kb T)

- Velocity V v V V↔ = / ( thTunit
)

- Momentum P mV p p mV v= ↔ = =/ ( th )
- Spring constant Kc kc K mt↔ = = Ω =c unit/ 02 2 2

0 ω

- Potential U z u x U z k T( ) ↔ =( ) ( ) / ( b )
- Harmonic potential ½ K Zc

2  ↔½ kcz2

- Angular frequency Ω = ↔ =Ω0 0(K m t/ )0.5 ω unit

-  D i f f u s i o n  c o n s t a n t 

D k T mg V d D V g= = Γ ↔ = =( b th th) / / / 1/( ) 2 2
0 ( ) .

-  O v e r d a m p :  Γ >0 02ω ;  u n d e r d a m p e d Γ <0 02ω ; 

Γ =0 1/ 2Q .

Fig.1 The key aspects of the system under study [8].
Figure 1 presents several key aspects of the system under 
study. In (a), the potential shape is depicted as a combina-
tion of a harmonic potential, represented by V z( ) , with 

reflective boundaries added to simulate the effects of con-
fining walls. In (b), the simulated probability distribution 
shows the likelihood of a particle being present within 
this potential. Panel (c) illustrates an example of how the 
probability distribution P z p t( , , )  evolves over time in 

phase space. In (d), one can see the system’s stationary 
state, where the dynamics settle into a stable configuration 
in phase space. Finally, panel (e) shows the power spectral 
density (PSD) for the system, calculated using the Fast 

Fourier Transform (FFT) of the auto-correlation function. 
The PSD is compared in both the presence and absence of 
confinement to highlight the system’s response under dif-
ferent conditions.
Parameters used were g Q= =0.5( 1) , kc  = 1, lz  = 2. The 
simulation does confirm that the consideration of reflec-
tive boundary conditions includes a resonance, 1/ f 4  de-

pendence, and a 1/ f 2  dependence at high frequency (black 
curve in Fig. 1(e)). A semi-empirical equation can be used 
to reproduce Brownian motion spectra with reflective 
boundaries. It assumes the superposition of two equal con-
tributions. One is that the author neglects boundary condi-
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tions, while the other is that a diffusive Brownian particle 
with reflective walls that leads to a Lorentzian spectrum 
with 1/ f 2  dependence at high frequency.
The derivation of the first term is obtained starting from a 
stochastic two-level system. For simplicity, the author as-
sumes a single frequency D/ zgap

2 , which can be assumed 

as the Kramers frequency fk that differs only by a factor 

π/2 if one considers Einstein’s relation γ βD = −1 . Finally, 
it is found that

Sz = +0.5 0.5
    

4 / 2 2 1/
f fk

D Q
2 2 2+

π
βk fc 0

 
 
 

 
 
  
1− +

   
 
   f f

f f
0

2 2

 
k

(6)

where D is chosen to fit PSD from OxDNA simulations is 
very close to the diffusion coefficient for one bead in the 

coarse-grained model (  0.7 10× 9 2 1nm s− )  [8].

4. Conclusion
In conclusion, this study has conducted a thorough anal-
ysis of random walks and their applications within the 
realm of biology particularly in understanding molecular 
processes. By investigating the core principles and math-
ematical models underlying random walks the author 
has highlighted their unique property of returning to the 
origin. This phenomenon is crucial in various fields, in-
cluding the study of diffusion and molecular motion. The 
simulation results further reinforce the theoretical predic-
tions, showcasing how random walks play a significant 
role in understanding ballistic Brownian motion, especial-
ly in nanoconfined DNA. The ability of random walks to 
explain the trajectory and movement of particles within 
confined spaces provides valuable insights into the behav-
ior of bio-molecules under such conditions. Nanoconfined 
DNA is particularly relevant here as it exhibits unique 

motion characteristics when constrained and random walk 
models help to elucidate these behaviors. Furthermore, 
the study confirms the relationship between the number 
of steps in a random walk and the mean squared displace-
ment, which is linearly proportional. This consistency 
with theoretical predictions further validates the robust-
ness of random walks as a model for molecular motion. 
The implications of this work extend beyond theoretical 
understanding which helps understand particle movement 
at the nanoscale is essential.
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