
ISSN 2959-6157

Dean&Francis

373

Abstract:
This review examines the effects of AI-assisted
programming in contemporary software development,
paying particular attention to tools driven by Large
Language Models (LLMs), such as GPT-4o and GitHub
Copilot. Starting with data processing and ending with
model deployment, the review describes the standard
workflow for training machine learning models and how
programmers use these models to improve their coding
processes. GitHub Copilot, an AI-powered code generator,
and GPT-4o, a general-purpose LLM, are compared in
terms of accuracy, usability, and efficiency when assisting
with programming tasks. The results show that although
both tools greatly facilitate coding, they each have
particular advantages and disadvantages. GitHub Copilot
is excellent at integrating with IDEs, providing contextual
code recommendations and streamlining processes. In
contrast, GPT-4o shows better accuracy when creating
code from scratch, but it does not have Copilot’s seamless
IDE integration. The review also identifies some of the
current drawbacks of AI-powered coding tools, including
the possibility of producing faulty or vulnerable code as
a result of training on unreliable datasets and the inability
to comprehend context, which can occasionally result
in functionally correct but practically incorrect code. In
order to filter and fix problematic code before training,
the review recommends using advanced algorithms
for data pre-processing. It also suggests improving the
interpretability of code generated by AI to help developers
better comprehend and trust the results.

Keywords: Artificial intelligence; large language model;
machine learning.

AI-Powered Coding Tools: A Study of
Advancements, Challenges, and Future
Directions

Dingyi Zhang

Abingdon School, Oxfordshire,
United Kingdom

dingyi06.zhang@gmail.com

1

Dean&Francis

374

ISSN 2959-6157

1. Introduction
Programming has become an essential skill in modern
human society, as it is being used in many different in-
dustries, including software, finance, healthcare etc. Peo-
ple’s programming skill set are in high demand and are
becoming more and more common in different careers.
However, since the programming skill set itself requires
a solid background in mathematics, familiarity in various
algorithms and problem-solving techniques, the workforce
of programmer cannot keep up with the growing demand
of the current human resource market. The way that pro-
grammers manually code is also relatively inefficient as
they will need to do repetitive work and might involve
considerable time spent on debugging and refining code,
which can slow down the working processes. In such a sit-
uation, a set of tools is required to assist the programmers’
work, and this tool can be provided with the assistance
of Artificial Intelligence (AI), especially Large Language
Models (LLMs). These tools can assist programmers by
providing a quick draft of the code to provide ideas, or
to check existing code and provide suggestions related to
improving the code.
One exact tool to help programmers code more efficiently
and reduce error is Github Copilot, based on OpenAI’s
Deep Learning (DL) model Codex [1, 2], which is trained
mostly over open-source Github code [3], is able to gen-
erate solution code and methods from existing code and
code comments [4]. It has been shown to be useful for
experienced programmers, by providing solutions for ba-
sic programming problems to reduce their workload [2].
However, it has demonstrated several drawbacks in vari-
ous areas, including quality fluctuations when generating
code in specific programming languages like JavaScript.
Additionally, the code could be further simplified, often
relies on undefined helper methods [5], and frequently
produces inconsistent, buggy output [2], as well as vulner-
able code [3].
Despite having the specialized tool Github Copilot, pro-
grammers use other general-purpose AI tools as well. An
example of this is the most recent OpenAI LLM model,
Generative Pre-trained Transformer 4 Omni (GPT-4o)
released on 13 May 2024 [6]. Similar to Github Copilot,
GPT-4o is able to generate computer code and refactor
existing codes, with both tasks proven to be more success
that previous models. Tests have been carried out to show
these conclusions, but the code it manipulates has still
been reported to fail when being applied [7]. Due to the
importance of AI’s assistance in both industrial region and
educational region [1, 8], and the fact that more compet-
itors such as Amazon CodeWhisperer [9], it is necessary
for a review to be done in the region of AI-assisted pro-
gramming to conclude the current situation, to help with
future development of this region.

The remainder of this article consists as follows. This
paper will firstly introduce the workflow of training a ma-
chine learning model, then provide an example of a typi-
cal programmer utilizing the tool of AI during the process
of programming in Section 2. Followed by a discussion
of the difference between different available AI-powered
assisting tools, as well as some overall challenges faced
by the entire AI-assisted programming region in Section 3.
At the end, Section 4 will summarize the article, giving a
general conclusion together with possible future directions
of the region.

2. Method

2.1 Introduction of Machine Learning Model
Training Workflow
In a standard machine learning model training workflow,
the entire process begins with the collection of raw data
and processing the data according to whether the learning
method is supervised learning or unsupervised learning
[10]. Then, the data is usually split into different datasets,
such as training, validating and testing datasets. After
preparing the data, the model of machine learning is set
up by choosing a machine learning algorithm, defining
the architecture of the model, and configuring hyperpa-
rameters. The next step is then to train the model with the
previously prepared training dataset, and while the model
is learning by adjusting its weights based on the input
data and corresponding labels, the model’s performance
is evaluated by using the validating dataset to help adjust
hyperparameters and prevent overfitting [10]. At the end,
when the model achieves a certain level of performance, it
will be tested using the testing dataset and if it passes the
test with a certain score, it is then deployed for practical
use, processing new data.

2.2 The Workflow of Programmer using AI in
Programming
A typical process of a programmer utilizing AI tools be-
gins with drafting code, where the programmer sets up
an initial structure of the code, then an AI-powered code
generator can produce foundational code snippets based
on the programmer’s initial input. The programmer will
then either accept the generated snippet directly or take it
as an inspiration to write their own code. As the program-
mer continues refining the code, an AI-driven code com-
pletion tool will anticipate possible next steps, offering
context-aware suggestions that can speed up the coding
process. At the same time, an AI-driven error-detection
tool can recognize possible errors that the programmer
has made, highlighting these erroneous codes to hint to
the programmer for an immediate fix, and saving time
for later debugging. Additionally, at the finishing phase

2

Dean&Francis

375

Dingyi Zhang

of writing a piece of code, LLM-based AI can assist the
programmer by reviewing the code, providing feedback
on the performance, readability, and compatibility of the
code, and helping the programmer with any potential im-
provements.

2.3 Github Copilot
In the previously mentioned example, an AI-powered
code generator and code completion tool are used to help
the programmer complete the principal part of the code.
Github Copilot is a popular example of such a tool. It is
able to integrate into several Integrated Development En-
vironment (IDE) and provide assisting functions for the
programmer. One of the functions is the suggesting func-
tion, Github Copilot is able to give suggestions to either
modify the current code or to add more code, determined
by the existing context code and comments [11]. Another
commonly used function is the IDE chat function, where
Github Copilot gathers enter and context, and makes use
of those factors to construct a prompt, which it then sends
to the LLM, the LLM the generates a response which
is returned to the programmer or Github Copilot. In the
latter case, Github copilot will generate code according
to the response from the LLM and return the code to the
programmer. Common uses for this function are to let it
explain a piece of code or to generate unit tests for the
program [10].

2.4 GPT-4
Other than dedicated-purpose AI-powered tools, gener-
al-purpose AI-powered tools can also be used to assist
programmers in coding, as one of OpenAI’s newest LLM
GPT-4o (based on the Transformer model) has been prov-
en to be more effective on solving programming-related
problems than previous existing LLMs [7]. Researches
suggest GPT-4o and models before are being able to re-
factor existing code and significantly increase the quality
of the code as well as the readability of the code, it is also
suggested that GPT-4 is able to generate unit tests that
has a great coverage [12]. Generally, GPT-4 and LLMs
are able to improve code in general, explain the code, and
eventually increase the efficiency of reviewing the code.

3. Discussion

3.1 Comparison between ChatGPT and Copilot
Analyzing the strengths and weaknesses of different
AI-powered tools such as GitHub Copilot and GPT-4 in
assisting programming involves assessing various key
factors like code accuracy, user-friendliness and overall
efficiency.
In terms of code accuracy, in a benchmark named Hu-
manEval that aims to examine a model’s ability to solve

a python coding task, GPT-4 achieves a higher average
score than Copilot, which suggests that GPT-4 is more
capable of finish a single programming tasks accurately
than Copilot [9]. However, the benchmark only considers
the situation of basic programming tasks, not the compli-
cated real-life programming tasks [13]. Different to GPT-
4, copilot is more trained and designed towards generating
code suggestions with context code, instead of generating
code from scratch [11], and there is currently no bench-
mark or research that has been carried out to show which
model is more accurate when generating code with context
code. Therefore, though GPT-4 is generally more accurate
in generating code than Copilot, it is still not clear which
model is more accurate in actual application scenarios.
In terms of user-friendliness, since Copilot has a built-in
support for multiple IDEs, it is significantly more con-
venient for the user to generate code directly inside their
current working IDE than having to switch to a website
to generate code from GPT-4 [11]. There are several
third-party supports for GPT-4 inside several different
IDEs, but the inconsistent update and the lack of official
support will result in less friendly user interface and po-
tential data security risks [14-16].
When it comes to overall efficiency, different AI-powered
tools might perform differently under different tasks. Re-
search has shown that, considering the code smell of the
code these AI-powered tools generate, the average techni-
cal debt of Copilot is 9.1 minutes, and ChatGPT, slightly
shorter, 8.9 minutes [9]. This has shown that the average
working efficiency of both ChatGPT and Copilot is simi-
lar, but with ChatGPT being slightly more efficient.

3.2 Existing Shortcomings of AI-powered Cod-
ing Tools
Despite the recent advancements in AI-powered coding
tools, several notable flaws still limit the effectiveness and
reliability of these tools. The accuracy of the generated
code is a related problem, as AI models such as ChatGPT
is able to interpret and analyse existing code, and context
given by the user, it is unable to develop the entirety of the
context where the code is going to be employed. There-
fore, it might not consider these contexts when generating
codes, resulting in “functionally correct” but generally
erroneous code [17].
The data that is used to train AI could also inflict issues in
generated code. For example, Copilot has processed large
amounts of unreviewed legacy code, which might lead to
the existence of potential exploitable bugs in generated
codes [3], or, if the training dataset of a model contains
data that is a subject to copyright or other protections,
codes that is involved in internal confidentiality of orga-
nizations or copyrighted information might be generated
[17]. This dilemma is an important issue that needs to be
resolved.

3

Dean&Francis

376

ISSN 2959-6157

3.3 Possible Future Prospects of AI-assisted
Programming
AI-assisted programming has become an important do-
main in the context of advancing machine learning tech-
nologies. For the future of this field, this review suggests
the following possible directions of development that
AI-powered tools can improve on. Future AI models may
not only use more sophisticated datasets but also incor-
porate advanced algorithms to pre-process and filter the
training data to ensure better quality. For example, before
feeding the data into the model, dedicated algorithms and
AI-powered tools can be used to automatically filter and
correct potentially faulty code, improving the integrity of
the dataset, and increasing the degree of automation in the
process of training and refining AI models. Additionally,
improving the interpretability of AI models and the code
they generated is crucial. By developing features that al-
low AI tools to generate algorithmic flowcharts or provide
explanations for code suggestions, developers can better
understand the reasoning behind the generated code.
While these advances may increase the cost and com-
plexity of training new AI models, they will significantly
improve the quality of the code generated, as well as the
usability of AI-based tools.

4. Conclusion
In this paper, the work of reviewing the role and currently
existing flaws of AI in software development is finished.
This paper introduced the workflow of both training and
using programming-dedicated AI tools, as well as two dif-
ferent AI-powered tools, their advantages and disadvan-
tages as an assisting tool. Currently, the domain of AI-as-
sisted programming is facing the challenge of low-quality
generated content. For possible future development routes
of AI-powered tools, this paper suggests automating the
process of pre-processing the training dataset as well as
adding assistance features that increase the interpretability
of these tools.

References
[1] Wermelinger M. Using github copilot to solve simple
programming problems. In: Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1;
2023 Mar; 172-178.
[2] Dakhel AM, Majdinasab V, Nikanjam A, Khomh F,
Desmarais MC, Jiang ZMJ. Github copilot ai pair programmer:
Asset or liability? J Syst Softw. 2023;203:111734.
[3] Pearce H, Ahmad B, Tan B, Dolan-Gavitt B, Karri R. Asleep
at the keyboard? assessing the security of github copilot’s code
contributions. In: 2022 IEEE Symposium on Security and
Privacy (SP); 2022 May; 754-768.

[4] Nguyen N, Nadi S. An empirical evaluation of GitHub
copilot’s code suggestions. In: Proceedings of the 19th
International Conference on Mining Software Repositories; 2022
May; 1-5.
[5] Finnie-Ansley J, Denny P, Becker BA, Luxton-Reilly A,
Prather J. The robots are coming: Exploring the implications of
openai codex on introductory programming. In: Proceedings of
the 24th Australasian Computing Education Conference; 2022
Feb; 10-19.
[6] Wiggers K. OpenAI debuts GPT-4o ‘omni’ model now
powering ChatGPT. TechCrunch. 2024 Aug 5. Available from:
https://techcrunch.com/2024/05/13/openais-newest-model-is-
gpt-4o/
[7] Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I,
Aleman FL, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774. 2023.
[8] Becker BA, Denny P, Finnie-Ansley J, Luxton-Reilly
A, Prather J, Santos EA. Programming is hard-or at least it
used to be: Educational opportunities and challenges of ai
code generation. In: Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1; 2023 Mar;
500-506.
[9] Yetiştiren B, Özsoy I, Ayerdem M, Tüzün E. Evaluating the
code quality of ai-assisted code generation tools: An empirical
study on github copilot, amazon codewhisperer, and chatgpt.
arXiv preprint arXiv:2304.10778. 2023.
[10] Wang H, Lei Z, Zhang X, Zhou B, Peng J. Machine learning
basics. Deep learning. 2016;98-164.
[11] GitHub copilot documentation. GitHub Docs. Available
from: https://docs.github.com/en/copilot/, 2024.
[12] Poldrack RA, Lu T, Beguš G. AI-assisted coding:
Experiments with GPT-4. arXiv preprint arXiv:2304.13187.
2023.
[13] Zhang S, Zhao H, Liu X, Zheng Q, Qi Z, Gu X, et al.
NaturalCodeBench: Examining Coding Performance Mismatch
on HumanEval and Natural User Prompts. arXiv preprint
arXiv:2405.04520. 2024.
[14] Gitbito. Gitbito/Bitoai: Bito’s AI helps developers
dramatically accelerate their impact. it’s a Swiss army knife of
capabilities that can 10x your developer productivity and save
you an hour a day, using the same models as chatgpt!. GitHub.
Available from: https://github.com/gitbito/bitoai, 2024.
[15] Ismailkasan. Ismailkasan/chat-GPT-vscode-extension:
CHATGPT assistant completion for vscode extension. GitHub.
Available from: https://github.com/ismailkasan/chat-gpt-vscode-
extension, 2024.
[16] Silasnevstad. Silasnevstad/GPT-extension-vscode: An
extension bringing OpenAI’s API to your fingertips inside of
Visual Studio Code. GitHub. 2024. Available from: https://
github.com/silasnevstad/GPT-Extension-VSCode, 2024.
[17] Atkinson CF. ChatGPT and computational-based research:
benefits, drawbacks, and machine learning applications.
Discover Artificial Intelligence. 2023;3(1):42.

4

https://techcrunch.com/2024/05/13/openais-newest-model-is-gpt-4o/
https://techcrunch.com/2024/05/13/openais-newest-model-is-gpt-4o/
https://docs.github.com/en/copilot/
https://github.com/gitbito/bitoai
https://github.com/ismailkasan/chat-gpt-vscode-extension
https://github.com/ismailkasan/chat-gpt-vscode-extension
https://github.com/silasnevstad/GPT-Extension-VSCode
https://github.com/silasnevstad/GPT-Extension-VSCode

