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Abstract:
The research paper discusses the significance of Markov 
chain and random walk as fundamental probabilistic 
models that describe transitions between states in various 
fields, including natural language processing, finance, 
and bioinformatics. It traces the historical development of 
random walk, beginning with Karl Pearson’s initial concept 
in 1905 and culminating in the emergence of quantum 
random walks in the 21st century, while highlighting 
their mathematical properties and applications. The 
paper categorizes states in Markov chain into recurrent 
and transient, providing criteria for their classification 
and demonstrating the recurrence of random walks in 
different dimensions. It explores diverse applications of 
random walk, such as knowledge representation learning, 
Markov Decision Processes in reinforcement learning, 
advancements in medical research through neuroimaging, 
and innovative strategies for waste recycling path planning. 
The conclusion emphasizes the ongoing evolution of 
random walk theories, particularly with advancements 
in quantum computing and big data, suggesting that 
their applications will continue to expand and become 
increasingly sophisticated in the future.

Keywords: Markov chain; Random walk; Markov Deci-
sion Processes.

1. Introduction
The Markov chain is a robust probabilistic model 
that effectively delineates the transitions of random 
systems among a finite set of states. Its characteristic 
of “memorylessness” not only facilitates the model-
ing of intricate random processes but also establishes 
the Markov chain as an essential analytical instru-
ment across diverse domains, such as the modeling 
of linguistic structures in natural language process-
ing, the forecasting of price variations in financial 

markets, and the examination of genetic sequences 
in bioinformatics. The random walk, a quintessential 
illustration of a Markov chain, further underscores 
this property of memorylessness. It represents a 
straightforward and intuitive random process where-
in a walker (or particle) moves randomly within a 
defined space, with the direction and distance of each 
step determined exclusively by the current position, 
independent of prior trajectories. This model serves 
as an abstract generalization of numerous diffusion 
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phenomena observed in nature, including the Brownian 
motion of gas molecules and the diffusion of solutes in 
liquids, thereby providing a robust theoretical framework 
for the investigation of these phenomena. In conclusion, 
both the Markov chain and its specific instance—the ran-
dom walk—significantly enhance people’s comprehension 
of random phenomena and occupy an irreplaceable posi-
tion across multiple disciplines.
The exploration of random walks can be traced back over 
a century, with Karl Pearson first introducing the concept 
in 1905 as a model to describe and analyze the statistical 
characteristics of random activities [1], analogous to the 
erratic movements of an individual under the influence of 
alcohol. Initial research predominantly concentrated on 
the mathematical properties and theoretical underpinnings 
of random walks, alongside their applications in computer 
science. Noteworthy applications include PageRank [2], 
computer vision [3], and the analysis of complex social 
networks [4]. In the early 21st century, advancements in 
quantum computing technology led to the emergence of 
quantum random walks as an extension of classical ran-
dom walks within the quantum mechanics framework, 
gradually becoming a focal point of scholarly inquiry. 
Lov K. Szegedy developed a quantum variant of Markov 
chains [5], which facilitated the formulation of novel 
quantum walk algorithms. Magniez and colleagues further 
expanded the applicability of Szegedy’s methodology to a 
broader class of ergodic Markov chains, thereby enhanc-
ing previous complexity results based on the interrelations 
among the eigenvalues or singular values of the corre-
sponding Markov chains [6].
This article commences with an examination of the re-
currence properties of the random walk model, demon-
strating the conditions under which random walks exhibit 
recurrence, and subsequently extends to the applications 
of random walks across various fields.

2. Theory of Markov chain

2.1 Recurring Characteristics Summary
In a Markov chain, there are two primary categories of 
states: recurrent states and transient states. A recurrent 
state is characterized by the system’s eventual return to 
that state after entering it, with a probability of 1 . On the 
other hand, a transient state has a probability of returning 
to it that is less than 1 . The distinction between recurrent 
and transient states is important as it greatly influences 
their long-term behavior. Thus, it is essential to correctly 
identify whether a state is recurrent or transient to effec-
tively analyze and comprehend the long-term dynamics of 

Markov chains.
To effectively distinguish between recurrent and transient 
states in Markov chains, researchers have proposed vari-
ous classification criteria. Here are some of the main crite-
ria:
Let P nij ( ) be the probability of first returning to state j  af-

ter n steps starting from state i , and G P nij ij=∑ ( ).  Based 
on properties of return probabilities, one can derive the 
following criterion:
(1) Determination of recurrent states: If Gii = ∞ , then 
state i  is called recurrent. This means that the total proba-
bility of the system returning to state i  after starting from 
state i  is divergent, that is, the system will return to state i 
infinitely many times.
(2) Transient state determination: If Gii < ∞ , then state i
is called transient. This means that the total probability of 
the system returning to state i after starting from state i  is 
finite, which indicates that the system can only return to 
state i  a limited number of times.
In a Markov chain, if state i  and state j  are communicat-
ing (there exist positive probability paths from i  to j  and 
from j  to i ), then they are either both recurrent states or 
both transient states.
The random walk problem, as a case of Markov chains, 
can also be proven to be recurrent using the methods men-
tioned above.

2.2 Recurrence of Random Walks in Different 
Situations
For one-dimensional symmetric random walk and two-di-
mensional symmetric random walk, one can prove that it 
is recurrent, while for the three-dimensional symmetric 
random walk, one can show that 
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(where k  is a constant). According to Green’s formula, 
one knows that the three-dimensional symmetric random 
walk is transient.
For random walk problems in dimensions higher than 
three, one can first provide the relationship formula be-
tween dimension and probability

P n x n kii d(2 ( ) ) = =∑ ∑
n

∞

=0 ( !... !)x x n1

(2 !n)
d

2 /2(2d
1 1
)2n d  (where k 

is a constant). Therefore, for dimension d, P nii (2 )  is a 
monotonically decreasing function, which means that for 
cases above three dimensions, the results are all very rare.
For the problem of asymmetric random walks, one can 
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also start considering it from one dimension. In the case 
of one dimension, by replacing 1/ 2  with pq , it is easy to 

get P nii (2  ) (4 )
√

pq
πn

n

. One can see that Gii = ∞  if and only 

if p q= =
1
2

. Therefore, the one-dimensional asymmetric 

random walk is very recurrent.

In the two-dimensional case, substituting p q s t, , ,  for 1
4

 

yields P nii (2  •)
π
1
n

ω  (if and only if p q s t= = = , ω =1 , 

and is independent of n. In other cases, ω <1  and it is re-
lated to the size of n ). Therefore, two-dimensional asym-
metric random walks are very recurrent.
Random walks have a very special case known as the ran-
dom walk problem with absorbing barriers. First, the term 
“absorbing barrier” means that once a particle reaches that 
position, it stops moving. A simple example can illustrate 
this. Consider a particle that moves one unit to the left or 
right at each time step, with a probability of α  for mov-
ing left and a probability of β  for moving right. The par-
ticle is absorbed at the positions x = 0  and x a b= + , 
meaning that once the particle reaches either of these po-
sitions, it will no longer move. Now, the author wants to 
know the probability that if the particle starts at position 
x n=  (where 1 1≤ ≤ + −n a b ), it will eventually be ab-
sorbed at x a b= + . This probability can be realized in 
two ways: the particle moves to the right in the next step 
and is eventually absorbed at x a b= + ; or the particle 
moves to the left in the next step but can still be absorbed 
at x a b= +  afterward. According to the law of total prob-
ability, one can sum the probabilities of these two scenari-
os to obtain the total probability of the particle being ab-
sorbed at x a b= + . The author denotes this probability as 
Pn , where n is the initial position of the particle. There-

fore, for n a b= + −1,2,..., 1 , one has P P Pn n n= +α β+ −1 1  
[7].

3. Application of Markov chain
Random walks are not merely a theoretical mathematical 
concept; they also have numerous applications across var-
ious fields.

3.1 Knowledge representation learning
Knowledge representation learning is a method for trans-
forming entities and relationships within knowledge 
graphs into low-dimensional yet information-rich vector 

forms. This approach contains profound semantic infor-
mation that has direct applications in various tasks. Un-
fortunately, traditional knowledge representation learning 
models often focus solely on specific triples during the 
training process, neglecting the broader impact of other 
related entities and relationships within the knowledge 
graph on these triples. This limitation results in vector 
representations of entities and relationships that are rel-
atively shallow on a semantic level, thereby diminishing 
their performance in practical applications to some extent. 
However, it is encouraging that the domestic research 
community has recently introduced a novel knowledge 
representation learning model. This model cleverly in-
tegrates advanced technologies, including random walk 
algorithms and Long Short-Term Memory (LSTM) neural 
networks. Compared to traditional models, this innovative 
approach places greater emphasis on the positional infor-
mation of entities and relationship nodes within complex 
network structures, enabling it to capture and reflect the 
deep structural features of knowledge graphs more com-
prehensively [8].
Experimental data further confirms the model’s excep-
tional performance. The results indicate that the new 
model not only generates semantically rich and nuanced 
representation vectors but also achieves significant im-
provements in training efficiency. This accomplishment 
undoubtedly injects new vitality into the field of knowl-
edge representation learning and equips people with more 
powerful tools for further exploration and application of 
knowledge graphs.

3.2 Markov Decision Processes
In addition to the field of knowledge representation learn-
ing, Markov Decision Processes (MDPs) represent a 
significant application scenario for random walks [9]. A 
Markov Decision Process (MDP) serves as a foundational 
mathematical framework frequently employed to model 
decision-making in stochastic environments. It comprises 
four essential components: the state space, which delin-
eates the collection of potential states, each representing 
the current condition of the environment; the action space, 
which catalogs the array of actions available to the system 
in each state; the transition probabilities, which articulate 
the likelihood of the system transitioning from one state 
to another following the execution of a specific action; 
and the reward function, which specifies the immediate 
reward accrued by the system based on a given state and 
action. Within the MDP framework, the objective of the 
decision-maker is to ascertain a policy that prescribes 
the optimal action for each state, thereby maximizing the 
long-term cumulative reward.
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Markov Decision Processes (MDPs) are extensively 
utilized within the domain of artificial intelligence, par-
ticularly in the context of reinforcement learning. Rein-
forcement learning algorithms are designed to determine 
optimal actions based on the current state of the environ-
ment, with the objective of maximizing rewards through 
ongoing interactions between the agent and its environ-
ment. This process involves the agent first observing the 
environmental state, subsequently executing an action, af-
ter which the environment responds by providing a reward 
contingent upon that action and transitioning to a new 
state. Through iterative cycles of this nature, the agent 
incrementally acquires the necessary strategies to effec-
tively accomplish tasks. By leveraging Markov Decision 
Processes, reinforcement learning algorithms facilitate 
the agent’s ability to devise optimal pathways in dynamic 
environments and to make decisions that are responsive to 
fluctuations within those environments.

3.3 Medical Field
Random walks have also led to significant advancements 
in the medical field, contributing to further research in 
mental illnesses and neuroscience.
With the continuous advancement of non-invasive neu-
roimaging techniques, such as diffusion tensor imaging 
and functional magnetic resonance imaging, researchers 
are gaining a deeper understanding of the brain’s structure 
and function through the concept of networks. The appli-
cation of these technologies has significantly propelled 
the field of brain science forward. The brain network, a 
complex system composed of hundreds of brain regions 
and their interconnections, plays a crucial role in elucidat-
ing the mechanisms underlying brain function. Currently, 
research on structural brain networks often emphasizes 
the direct connections between brain regions; however, 
the higher-order connections among these regions are also 
of considerable importance. Investigating these higher-or-
der relationships enhances people’s comprehension of the 
complexity of brain networks and offers new insights for 
the diagnosis and treatment of mental disorders [10].
The human brain is regarded as a highly dynamic and 
complex network, with its functional connectivity relying 
on structural connections to facilitate effective cognitive 
communication. The potential connections between two 
brain regions within the structural network provide signif-
icant insights into understanding functional communica-
tion. However, quantifying the higher-order relationships 
among different regions of the brain network remains a 
challenge. Although network embedding methods have 
been widely applied, they are typically designed for single 
networks and often fail to yield new insights. Neverthe-

less, by employing random walk methods based on one-
step and two-step neighbor layers, it is possible to obtain 
embedding representations that are rich in information for 
each brain region. Utilizing these embedding represen-
tations allows for the capture of both direct and indirect 
connections within the network through the similarity 
of higher-order feature vectors between pairs of nodes. 
This approach shows promise for more comprehensively 
describing the relationships between brain regions in pa-
tients and elucidating abnormalities in brain function.

3.4 Waste Recycling
In the field of waste recycling, traditional methods that fo-
cus solely on the shortest routes between individual waste 
points and recycling stations may optimize locally but 
result in high global costs. These methods often overlook 
overall path efficiency, leading to increased total recy-
cling expenses. As urban traffic networks become more 
complex and the types of recycling stations diversify, this 
issue has become increasingly pronounced, highlighting 
the need for an efficient waste recycling path planning 
system. However, attempting to find a globally optimal 
solution by enumerating all possible path combinations is 
impractical due to the exponential growth of computation-
al demands as the network scales. Given that the volume 
of waste is typically comparable to the number of network 
nodes, the number of potential path combinations can 
reach a double-exponential level, further complicating the 
problem.
To address this challenge, Chinese scholars have innova-
tively introduced a random walk model and developed a 
straightforward yet effective strategy for garbage collec-
tion path planning [11]. This strategy begins at any node 
within the network and employs a random walk process to 
generate a series of random path chains of length l . The 
selection of l is critical, as it directly influences the accu-
racy and efficiency of the outcomes. Theoretically, as l  
approaches infinity, the model can approximate the opti-
mal solution. By utilizing the random walk method, this 
strategy can swiftly yield near-optimal combinations of 
collection paths while requiring minimal computational 
resources and sampling times, thereby demonstrating high 
computational efficiency and practicality.

4. Conclusion
In theoretical research, the probabilistic assumptions, 
mathematical properties, and statistical laws of random 
walks have been extensively studied. For instance, the 
mean of the random walk model represents the determin-
istic component in random time series, while the variance 
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indicates the extent to which the random component devi-
ates from the mean. However, as research advances, tradi-
tional random walk theory encounters several challenges. 
Consequently, researchers have begun to investigate more 
complex and precise random walk models to better simu-
late the dynamic random phenomena observed in the real 
world. In the future, research on random walks is expected 
to evolve in a more diversified and in-depth manner. On 
one hand, with the continuous advancement of quantum 
computing technology, quantum random walk techniques 
are anticipated to be applied across various fields. Quan-
tum random walks not only provide higher computational 
efficiency and enhanced security but also leverage prop-
erties such as quantum superposition and entanglement to 
create more intricate random walk patterns. This develop-
ment will offer innovative solutions for optimization prob-
lems in sectors such as finance, healthcare, and energy. On 
the other hand, with the emergence of big data and artifi-
cial intelligence technologies, random walk models will 
increasingly integrate with these advancements to achieve 
more accurate predictions and informed decision-mak-
ing. For example, by analyzing geographic location data 
related to human activities, more refined models of indi-
vidual and group movement can be developed, thereby 
optimizing applications such as traffic forecasting, urban 
planning, and epidemic modeling. Simultaneously, these 
models can provide robust support for areas such as social 
network analysis and marketing. Reason: The revised text 
improves vocabulary, enhances readability and clarity, and 
corrects grammatical and punctuation errors while main-
taining the original meaning. In summary, random walks, 
as a crucial model of stochastic processes, will continue to 
play a significant role in the future. With ongoing techno-
logical advancements and deeper research, the application 
areas of random walks will expand even further, and their 
theories and methodologies will continue to be refined and 

innovated.
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