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Abstract:
In the past decades, the rapid development of brain-
computer interface (BCI) technology has provided new 
perspectives on human-computer interaction. Traditional 
single-modal BCI systems, although showing promising 
results in many applications, still face challenges in terms 
of decoding accuracy, real-time performance, and user 
adaptability due to limitations in signal acquisition. To 
address these issues, multimodal brain-computer interfaces 
(MMBCIs) have emerged, aiming to improve the overall 
system performance by integrating information from 
different physiological signal sources. This paper reviews 
the basic concepts, signal sources, signal fusion techniques, 
application examples, and current challenges and future 
perspectives of multimodal BCI. By analyzing the existing 
research literature, we hope to provide theoretical guidance 
and framework support for further research in this area.

Keywords: brain-computer interface, multimodal signal 
fusion, deep learning, human-computer interaction, signal 
decoding, neuroscience, data processing techniques

1. Introduction
With the rapid development of neuroscience and 
information technology, Brain-Computer Interface 
(BCI) technology has gradually become an important 
research direction in the field of human-computer 
interaction. BCI technology greatly expands the 
way human beings connect with the digital world by 
directly decoding the user’s brain signals, thus al-
lowing barrier-free interaction between the brain and 
external devices. Although single-modal BCI sys-
tems have demonstrated some practical value in spe-
cific application scenarios, such as decoding motor 

intention using electroencephalogram (EEG) signals 
or monitoring changes in cerebral blood flow using 
functional near-infrared spectroscopy (fNIRS), such 
systems are often limited due to a variety of factors, 
mainly in terms of signal accuracy, real-time perfor-
mance, and user adaptability.
Multimodal BCI is proposed to address these limita-
tions. The multimodal BCI system integrates infor-
mation from different physiological signal sources, 
such as EEG and fNIRS, to complement each other’s 
strengths and weaknesses, with the expectation of 
improving the accuracy of signal decoding and the 
stability of the system. For example, the advantage 
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of EEG signals in temporal resolution can compensate for 
the deficiency of fNIRS in temporal delay, and vice versa; 
such signal fusion can form a richer user brain state sub-
strate, which improves the stability and accuracy of the 
multimodal BCI system in complex interference environ-
ments.
In recent years, with the rapid progress of multiple data 
processing technologies such as deep learning, how to 
effectively fuse information from multiple signal sources 
has become a hot spot in research. The research progress 
and application prospects of multimodal brain-computer 
interface technology mainly focus on the fusion and con-
version of multimodal information through deep learning 
to improve model performance. At the early stage of de-
velopment, the multimodal fusion technology focuses on 
improving the classification and regression ability of deep 
learning models, and the application of architectures such 
as joint, collaborative, and decoder, as well as their advan-
tages and disadvantages, are analyzed by elaborating the 
multimodal fusion architectures, methods, and alignment 
techniques. Specific methods include multi-kernel learn-
ing, image modeling, and neural networks, etc., which uti-
lize public datasets for cross-modal transfer learning and 
modal semantic conflict resolution. It is shown that the 
performance of the model can be effectively improved by 
comprehensively utilizing multi-domain information such 
as text, image, speech, and video. The core of multimodal 
technology lies in representation, fusion, transformation, 
and alignment, which can better utilize multimodal data 
in a comprehensive way by projecting heterogeneous fea-
tures into a common subspace. Future research directions 
include further optimizing cross-modal learning, resolving 
multimodal semantic conflicts, and improving multimodal 
combination evaluation capabilities.
The purpose of this study is to systematically review 
the latest research progress and application examples of 
multimodal BCI technology and to look forward to future 
research directions. This research will not only make a 
substantial contribution to promoting the development of 
BCI technology but will also provide theoretical and prac-
tical support for the fields of neurorehabilitation, affective 
computing, and intelligent human-computer interaction.

2. Sources of information

2.1 Visual information processing
Vision is one of the most important ways for people to 
perceive the external world. Visual signals are received 
through the retina and then transmitted to the cerebral cor-
tex for processing, finally forming the picture that people 
are aware of. Visual information processing is an import-

ant direction in the research of multimodal brain-computer 
interface technology. Through the measurement of human 
eye electrical signals, human eye movement, pupil size, 
and other information are transformed into signals that 
can be understood by computers, thus allowing visual in-
formation to be presented and processed in a digital way. 
Digital vision, on the other hand, is an important percep-
tual medium in this interactive process. In the emerging 
fields of virtual reality (VR), augmented reality (AR), 
mixed reality (MR), and so on, the integration of digital 
vision and multimedia interaction technology is particu-
larly significant. Through high-precision 3D modeling, re-
al-time rendering, and somatosensory interaction technol-
ogies, users can explore and manipulate the virtual world 
in an immersive manner, realizing a seamless information 
interaction experience with the real environment. In addi-
tion, in 1978, William Dobelle, a trailblazer in the field of 
visual brain-computer interfaces, introduced an innovative 
technique by placing a grid of 68 electrodes into the vi-
sual cortex of Jerry, who was blind. This groundbreaking 
procedure resulted in the generation of phosphene, a form 
of visual perception. The brain-computer interface system 
is composed of a video camera for capturing images, a 
signal processing unit, and electrodes for cortical stim-
ulation. Once implanted, the patient is able to perceive 
low-resolution images with a dot-matrix format and gray-
scale modulation, although the visual field is restricted 
and the refresh rate is low. This visual prosthesis system is 
designed to be portable, allowing patients to use it auton-
omously without needing help from a physician or techni-
cian.
2.1.1 Eye movements serve

Eye movements serve as a direct reflection of our 
thoughts, objectives, and memories, significantly in-
fluencing our interpretation of the visual environment. 
Consequently, integrating eye tracking with neuroim-
aging techniques offers valuable insights into various 
aspects of human cognition, including conditions like 
neurodegenerative diseases and neurological disorders. 
Functional Magnetic Resonance Imaging (fMRI) is a 
prominent method for investigating brain function in hu-
mans, enabling researchers to analyze brain activity while 
participants engage in different tasks. In numerous fMRI 
studies, the observed behaviors can either be a focal point 
of interest or a possible confounding factor. Nevertheless, 
eye tracking is often neglected in most of these studies.
Looking back 30 years, the history of eye-tracking tech-
nology can be roughly divided into three phases:
2000 years ago, the study of the human eye’s point of 
gaze, which began as early as the 19th century, was pri-
marily applied in physiology, psychology, and related 
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academic fields of ophthalmology for the purpose of un-
derstanding how the human eye works and how people 
process information both consciously and unconsciously 
(Javal, 1990).
2000~2020, this stage with the rise of the IT industry and 
so on, the Internet economy is almost equivalent to the 
attention economy, also known as the eyeball economy, 
accompanied by the miniaturization of eye-tracking tech-
nology, lightweight, more and more used in web applica-
tions, advertising and marketing and other fields.
After 2020, eye-tracking technology and other application 
areas become more extensive, especially the near-eye 
display form of XR devices began to integrate eye-track-
ing technology, the most representative of the AR glasses 
HoloLens 2 from Microsoft and widely used in scientific 

research HTC VIVE Pro Eye, both released in 2019.
2.1.2 techniques and data-base

There are a number of techniques for implementing eye 
tracking, including but not limited to:
1. Electrooculogram (EOG)
2. Scleral Electromagnetic Tracking Coil
3. Video based pupil monitoring
4. Infrared Corneal Reflection
XR Near-eye display devices basically use the infrared 
corneal reflection method, which is simply to utilize the 
difference between the cornea and the iris in reflecting 
near-infrared light and to capture and calculate the direc-
tion of eye movements by using a near-infrared fill light 
and near-infrared camera (Yan Guoli, Bai Xuejun, 2018). 
The following is the eye movement tracking dataset:

Table 1

2.1.3 Classification of eye-tracking interaction applica-
tions.

Today there are dialing/unlocking interactions using eye 
movements. For example, apple’s ios18 system, Apple 
Vision Pro Eye-Hand Synergy is also an active interaction 

based on eye tracking that
In addition to this interface input interaction, eye move-
ment input can also be used for game controls, such as 
weapon switching in PSVR 2 games
2.1.3 .1. Passive
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a technique that optimizes the rendering of a picture by 
tracking the position of the eye’s gaze in real-time. For 
example, gaze point rendering, only in the human eye’s 
most visually sensitive central concave (Foveal) region to 
render the highest resolution, with the distance away from 
the central concave increased visual sensitivity will also 
be sharply reduced, and accordingly only render a lower 
resolution of the screen, thus greatly reducing the burden 
of the headset screen rendering. b Based on the gaze point 
to achieve the auto-zoom function, including the Apple 
Vision Pro, Currently, all known head-up display screens 
have fixed focal length (usually 1 ~ 1.5m), the screen light 
has no depth information, the convergence and focusing 
position of the separation occurred, thus generating visual 
convergence adjustment conflict (VAC problem), trig-
gering visual fatigue, dizziness, and other problems. The 
focus point zoom can dynamically adjust the optical focus 
according to the content of the user’s attention, thus real-
izing a more comfortable and natural visual experience.
2.1.3 .2. Expressive & Diagnostic Interaction

Apple Vision Pro’s Eyesight feature is also an expressive 
application based on eye tracking, which uses an internal 
camera to track the user’s real-time eye movements be-
fore re-modeling them and rendering them on an external 
screen to reduce the barrier between the wearer and the 
person next to them.
2.1.4 Performance Requirements

Spatial Resolution and Temporal Resolution are two di-
mensions that disentangle the eye-tracking performance 
requirements of different application scenarios, where 
Spatial Resolution includes Accuracy and Precision; and 
Temporal Resolution includes Sampling Rate and End-
to-End Latency. Spatial resolution includes Accuracy and 
Precision, while temporal resolution includes Sampling 
Rate and End-to-End Latency.

2.2 Auditory information processing
Auditory information processing is also an important 
direction in the research of multimodal brain-computer 
interface technology. By measuring human auditory re-
sponses, such as brain waves, gibbous evoked potentials, 
and other information, auditory information is converted 
into signals that can be understood by computers in order 
to realize speech recognition, sound synthesis, and other 
functions. For example, this technology can be used to 
realize the voice control function of the human-computer 
interaction interface.
2.2.1 speech recognition

Speech is an analog signal, which needs to be sampled 
and processed by the microphone (array) and other equip-

ment to become a digital signal that can be processed by 
the machine; then after feature extraction, the signal is 
converted from the time domain to the frequency domain; 
and then using the extracted feature vectors, it is finally 
converted into text after pattern matching. Among them, 
the acoustic model and language model of the pattern 
matching link determine the final recognition effect, the 
acoustic model and language model need to be trained us-
ing the labeled data, and currently most of the supervised 
learning algorithms are used to achieve the advantage of 
high accuracy, the disadvantage is the need for human in-
tervention and large workload.
In practical applications, in addition to focusing on the 
machine learning algorithms and software processing 
used, it is also necessary to pay attention to the speech 
acquisition link, especially in far-field interaction sce-
narios (e.g., smart audio). Speech acquisition is the pre-
condition for speech recognition, if the quality of the 
acquired speech is not high, even if the arithmetic power 
is sufficient, the algorithm is subtle, and the data volume 
is large and high quality, the final recognition accuracy is 
not ideal. Therefore, in some scenarios, it is necessary to 
improve the quality of voice acquisition by improving the 
microphone noise reduction effect and adopting micro-
phone arrays.
The application of deep learning algorithms has made 
speech recognition one of the first breakthroughs in arti-
ficial intelligence. Currently, the speech recognition ac-
curacy of mainstream market vendors exceeds the human 
level, with the optimized recognition accuracy of cell 
phones, computers, noise-canceling microphones (arrays), 
and other scenarios being higher than 95%, the optimized 
recognition accuracy of phone calls and other scenarios 
being higher than 85%, and the optimized recognition ac-
curacy of other voices (compressed stored recordings and 
other scenarios) being higher than 80%.
2.2.2 Data sets:

1. International data set
1.1 .LJSpeech (single)
1.2 .JSUT
1.3 .RUSLAN
1.4 .RyanSpeech
1.5 .VocBench
1.6 Arabic Speech Corpus
1.7 .Silent Speech EMG
1.8 .Hi-Fi Multi-Speaker English TTS Dataset
1.9 .KSS (single)
1.1 0.VCTK (multiple)
1.1 1.LibriTTS(multiple)
2. Multitask data set
2.1 .ESD dataset
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3. Speech Sentiment Recognition Data set
3.1 .IEMOCAP (The Interactive Emotional Dyadic Mo-
tion Capture Database)
2.2.3 Natural Language Generation & Language Synthesis
Natural Language Processing (NLP) is an important 
branch of Artificial Intelligence that focuses on computers 
understanding and generating human language. Multi-
modal learning, on the other hand, refers to the ability of a 
machine learning model to process different types of data, 
such as images, audio, text, and so on. With the develop-
ment of deep learning technology, multimodal learning 
has received widespread attention in the field of NLP.
The integration of multimodal learning with NLP can 
help machines better understand human language and 
produce better results in many application scenarios. For 
example, in the image description task, the model needs to 
understand the content in the image and generate the cor-
responding text description; in the sentiment analysis task, 
the model needs to recognize the sentiment tendency from 
the text and classify it; in the machine translation task, the 
model needs to understand the semantic relationship be-
tween two different languages.
A speech neuroprosthesis is a device designed to inter-
pret brain activity related to speech and convert it into 
communicative outputs, which can include text, sounds, 
or facial movements associated with speech. These neu-
roprostheses not only facilitate more natural forms of 
communication but also help restore other expressive 
elements that convey meaning, such as tone, volume, and 
facial expressions. Recent advancements in speech neuro-
science, neural interface technology, and machine learning 
have propelled the development of clinically practical 
speech neuroprostheses. Ongoing research has deepened 
the understanding of how speech features are represented 
in the cortex, with a particular focus on the motor control 
mechanisms involved in the vocal tract, which can assist 
patients with incomplete atresia syndrome who rely on 
Augmentative and alternative communication (AAC , 
AAC) methods of communication, by laying the ground-
work for the decoding of their cortical activity into textual 
Laying the groundwork for the development of a verbal 
neuroprosthesis.

2.3 Haptic information processing
Compared with visual and auditory information, haptic 
information processing has been studied relatively little. 
However, with the application of more and more wear-
able technologies, the study of human tactile responses 
has triggered attention to haptic information processing 
in multimodal brain-computer interfaces. Currently, re-
searchers have realized a certain degree of haptic feedback 

through technologies such as skin sensors and artificial 
arms.
Since their discovery in 2010, Piezo proteins have been 
shown to be widely distributed in various tissues and or-
gans of the human body. Ion channels composed of Piezo 
proteins as subunits respond to specific mechanical stimu-
li and open, allowing positively charged ions to flow into 
the cell. The two ion channels in the Piezo protein family, 
Piezo1 and Piezo2, have different activation mechanisms. 
Piezo1 can be activated by either positive or negative 
pressure, while Piezo2 can only be activated by posi-
tive pressure. Their distribution in the body also differs; 
Piezo1 is primarily found in non-sensory tissues, partic-
ularly in fluid dynamic pressure environments, providing 
mechanosensitivity to non-excitable cells, participating 
in erythrocyte volume regulation, shear stress sensing, 
and perceiving fluid flow in the kidneys. Conversely, 
Piezo2 is mainly expressed in sensory nerve cells and is 
involved in mechanosensitivity related to touch and pro-
prioception, as well as in the mechanosensory function of 
neurons and their environments. Both Piezo1 and Piezo2 
also participate in stress perception at specific sites, such 
as articular chondrocytes. Researchers have developed 
several techniques to stimulate Piezo protein ion chan-
nels in vitro, including “stretching” and “poking” based 
on membrane-clamp electrophysiology, indentation and 
shear force testing using atomic force microscopy (AFM), 
and approaches involving chemical agonists or magnetic 
nanoparticles. However, due to the advantages and dis-
advantages of each technique in terms of ease of use, the 
number of sampled channels, and the quantification of 
stimuli and responses, the exact mechanism of how me-
chanical forces couple to the activation of ion channels 
has yet to be elucidated. The fusion of touch in multi-
modal learning has been a challenge due to the expensive 
process of tactile data collection and the poor standardiza-
tion of sensor outputs. A recent paper, Binding Touch to 
Everything: Learning Unified Multimodal Tactile Repre-
sentations, presented by a team of researchers from Yale 
University and the University of Michigan, offers a new 
solution to this challenge. The team proposed a unified 
haptic model called UniTouch that connects vision-based 
tactile sensors to multiple modalities.UniTouch does this 
by aligning its embeddings with pre-trained image embed-
dings already associated with other modalities.
2.3.1 Zero-sample haptic understanding

Urgent alignment of haptics and text enables zero-sample 
haptic understanding, e.g., material categorization and 
grasp stability prediction. Following CLIP, the authors 
encoded haptic images and textual cues using templates 
and class names. Zero-sample classification is achieved by 
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computing and ranking similarity scores between them.
2.3.2 Haptic-LLM (Language Model)

using an existing visual-linguistic model that is consistent 
with the image embedding of the aligned haptic embed-
ding, a haptic-linguistic model can be created by switch-
ing to the present haptic encoder. Given haptic images and 
linguistic inputs, a fuller understanding can be obtained 
through questions and answers.

2.3.3 Haptic Image Synthesis

Binding haptics to text also opens up additional potential 
capabilities for haptic image synthesis. The authors utilize 
a pre-trained text-to-image diffusion model and use haptic 
features to condition the denoising process for zero-sam-
ple haptic-to-image generation [and haptic-driven image 
stylization.
2.3.4 Database

Table 2

3. Brain-computer interface branches
Multimodal neural interfaces primarily involve the use of 
optical, electrical, magnetic, acoustic, and chemical drug 
delivery methods to record and modulate neural activity.

3.1 Optical Neural Interface
Among them, optical neural interfaces mainly include op-
tical recording of neural activity and optical stimulation, 
which are categorized into exogenous and endogenous 
modalities according to whether exogenous materials 
(including photosensitive genes, nanomaterials, dye com-
pounds, etc.) are applied.
The main principle of exogenous optical recording is to 
correlate fluorescent signals with neuronal local potentials 
by molecular synthesis or genetic engineering and to ob-
serve and record fluorescent signals from specific “active” 
wavelengths by optical detection. Fluorescent probes are 
widely used in neuroscience and generally include syn-
thetic, genetically encoded, and hybrid (using a combina-
tion of synthetic dyes and genetically encoded proteins). 
Now, in combination with large-scale single-photon or 
multiphoton imaging, we are able to read the activity of 
neural circuits during wakefulness and in correlation with 
animal behavioral science. Exogenous optical stimuli, 
on the other hand, include photoactive molecules based 
on photochemical interactions, nanomaterials based on 
photothermal and photovoltaic interactions, and optoge-

netic stimuli that require genetic modification; whereas 
endogenous optical signal (OS) recordings comprise both 
direct measurements of the scattering properties of light 
interacting with neural tissues, and indirect measurements 
of changes in the concentration of labeled substances that 
correlate with brain activity. Endogenous optical stimu-
lation mainly utilizes the sensitivity properties of certain 
neurons themselves to specific light conditions for optical 
modulation and so on.

3.2 Electrical Neural Interface
Electrical neural interfaces serve as direct communica-
tion pathways between the nervous system and external 
devices. Recent technological developments in this area 
have led to more effective tools for studying, restoring, 
and enhancing neural functions. Nonetheless, the complex 
structure of the nervous system presents considerable 
challenges in the design, fabrication, and integration of 
these systems. This review emphasizes recent progress 
in neuroelectrical interfaces, particularly focusing on in-
novative technologies that enhance both spatiotemporal 
resolution and the ability to map and manipulate brain 
circuits. Key topics include large-scale, long-term neural 
recording, wireless, and miniaturized implantation tech-
niques, as well as advancements in signal transmission, 
amplification, and processing, alongside the integration of 
electrical interfaces with optical technologies.
Neural interface technology using electricity has become 
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critical in basic neuroscience and translational medicine. 
Common neurophysiological signals utilized include elec-
troencephalograms (EEG), electrocorticograms (ECoG), 
local field potentials (LFPs), action potentials (APs), and 
spike potentials, which are primarily obtained through 
microelectrodes. Implantable microelectrodes and associ-
ated technologies are preferred for contemporary neural 
interface applications due to their sub-millisecond tempo-
ral resolution and capability to detect individual neuronal 
electrical signals in vivo.
Notably, flexible microelectrodes that have surfaced in 
recent years offer excellent nerve-electrode interfaces, 
facilitating long-term stable large-scale neural recordings. 
This paper examines the latest advancements in both op-
tical and electrical neural interfaces, covering the princi-
ples of optical recording and stimulation through genetic 
engineering techniques, hemodynamic imaging, as well as 
the recording and stimulation capabilities of implantable 
microelectrodes, among other methodologies.

3.3 Magnetic neural interfaces
Magnetic neuromodulation provides a wireless, remote 
means of deep brain stimulation, offering advantages over 
optogenetic and wired electrode methods. However, its 
adoption has been limited due to a lack of understanding 
regarding its mechanisms and the shortcomings of early 
magnetic systems. Additionally, while magnetic neuro-
modulation holds significant promise for neuroscience 
research, the exploration of cell-type-specific magnetic 
modulation is still in its infancy.
Researchers at the Institute for Basic Science (IBS) and 
the Center for Nanomedicine at Yonsei University have 
developed a novel magnetogenetic technology known 
as the “Neurokinetic Magnetobiological Interface” (Na-
no-MIND). This approach employs a nanomaterial-based 
toolkit that, in conjunction with Cre-loxP technology, 
selectively activates genetically encoded Piezo1 ion chan-
nels in targeted neuronal populations. The technique also 
utilizes the torque generated by nanomagnetic actuators 
for neuromodulation both in vitro and in vivo.
The application of this cell type-specific magnetic method 
has been demonstrated in various behavioral models, in-
cluding bidirectional regulation of feeding behavior, long-
term weight control in obese mice, and wireless modula-
tion of social behaviors among multiple mice in a shared 
environment. This capability facilitates the remote control 
of specific brain regions, allowing for the modulation of 
complex brain functions related to emotions, social inter-
actions, and motivation in animal subjects.
In their studies, the team applied Nano-MIND technology 
to selectively activate inhibitory GABA receptors in the 

medial preoptic area (MPOA) of infertile female mice, 
resulting in a significant enhancement of parental behav-
iors. Additionally, the technique was used to stimulate 
motivational circuits in the lateral hypothalamus, affecting 
the feeding behavior of the animals. The findings revealed 
that activation of inhibitory neurons in these areas led to a 
100% increase in appetite and feeding behavior, while ex-
citation of neurons resulted in a more than 50% reduction 
in appetite.
These results demonstrate that Nano-MIND technol-
ogy can selectively engage specific brain circuits and 
bidirectionally regulate higher brain functions. The re-
searchers anticipate that this technology will advance the 
understanding of brain function, aid in the development 
of complex artificial neural networks and bidirectional 
brain-computer interface systems, and open new pathways 
for treating neurological disorders.

3.4 Acoustic Neural Interface
A novel noninvasive closed-loop acoustic brain-computer 
interface (BCI) has been developed to decode the onset 
time of seizures using EEG signals and to trigger vagal 
ultrasound stimulation to halt seizures. This recent study 
established the BCI system and utilized a multilevel 
threshold model to decode seizure onset from wirelessly 
collected electroencephalography (EEG) data recorded 
from the hippocampus.
In an epileptic rat model, the vagus nerve was stimulated 
using acoustic radiation force, applied via varying acous-
tic parameters, to evoke responses when pen tetrazole was 
administered. Subsequently, the EEG signals indicative of 
seizures initiated ultrasonic stimulation of the vagus nerve 
to influence the outcomes of the seizures. Additionally, the 
mechanisms underlying seizure control by the BCI system 
were examined through real-time quantitative polymerase 
chain reaction (RT-qPCR) techniques.

4. Existing convergence technologies

4.1  mVEP and MI
The hybrid brain-computer interface (BCI) system suc-
cessfully generated both expected motor imagery (MI) 
and modified visual evoked potential (mVEP) signal char-
acteristics, with both signals resembling those produced in 
a unimodal BCI task. Furthermore, results from online 2D 
motion control experiments indicate that this hybrid BCI 
offers more efficient and intuitive control commands.
The significance of this is that the hybrid BCI system 
introduces a compensation mechanism for effective 2D 
motion control, particularly in application scenarios where 
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P300 stimuli may not be applicable. Overall, this system 
enhances the feasibility of online control and opens up 
new opportunities for BCI applications in complex envi-
ronments, facilitating smoother and more precise motion 
control in practical settings.

4.2  EEG and fNIRS
EEG measures the electrical activity of neurons in the ce-
rebral cortex, boasting high temporal resolution that cap-
tures rapid changes in neural activity at the millisecond 
level. This characteristic makes EEG particularly effective 
for detecting fast brain signals, such as those associated 
with motor imagery (MI) and event-related potentials 
(ERP). In contrast, fNIRS assesses neural activity indi-
rectly by monitoring variations in blood oxygen concen-
tration within the brain, offering a high spatial resolution 
that provides detailed information about the localization 
of brain regions. It primarily detects the hemodynamic re-
sponse related to increased neural activity and is effective 
in capturing slower physiological changes.
While EEG excels in temporal resolution, it has limita-
tions in spatial resolution, making it challenging to pre-
cisely locate brain activity. Conversely, fNIRS, with its 
high spatial resolution, is versatile in its applications but 
suffers from low temporal resolution, hindering its ability 
to track rapid fluctuations in brain activity in real-time. 
By integrating both EEG and fNIRS, a hybrid BCI system 
can leverage the strengths of each approach to achieve 
data that possesses both high temporal and spatial resolu-
tion, resulting in a more comprehensive understanding of 
brain activity.

4.3  adaptive
Multi-feature adaptive fusion framework for kernel track-
ing. A multi-feature description of the target is constructed 
using a set of sub-models of the target features, and mul-
tiple features of the target are integrated into the kernel 
tracking method by a linear weighting method. According 
to the similarity between each feature submodel and the 
current target and background, there is an adaptive weight 
updating mechanism based on the Fisher divisibility met-
ric. Meanwhile, in order to overcome the drift during the 
model updating process, a selective updating strategy is 
proposed based on the divisibility of submodels, which is 
capable of automatically adjusting the weights of the fea-
tures in the tracking according to the actual scene changes 
to realize the adaptive response to the scene changes. The 
selective submodel updating strategy realizes the adapta-
tion to the changes of the target itself and reduces the in-
fluence of the model drift; in addition, this method has the 
advantages of simplicity and speed. In the experiments, 

color and LBP texture are selected as the target features, 
and through the experiments on several real scenes, it is 
verified that the proposed method is adaptive to the chang-
es of the scene and the target, and is able to achieve robust 
real-time target tracking.

5. Summarize
Multimodal learning can be understood as mining and 
analyzing heterogeneous data from multiple sources, for 
which different models need to be feature extracted and 
fused in different ways to accurately capture the deep 
concepts, contexts, and correlations expressed by these 
modalities.
In this thesis, we systematically review the research prog-
ress and application prospects of multimodal brain-com-
puter interface technology. First, the characteristics and 
applications of information sources such as visual, audi-
tory, and tactile are analyzed through examples, revealing 
the importance and unique functions of different percep-
tual modalities in brain-computer interfaces. The com-
bination of these information sources not only enhances 
the perceptual ability of the system but also dramatically 
improves the user’s interaction experience.
Second, this paper discusses the neural interface branch of 
brain-computer interfaces and analyzes the latest develop-
ment of different neural signal acquisition and processing 
technologies. These techniques have made significant 
progress in improving signal quality and reducing interfer-
ence, laying an important foundation for realizing efficient 
and accurate brain-computer interaction.
Finally, we analyze the existing fusion technologies and 
point out the potential of multimodal information fusion 
in the development of brain-computer interfaces. By inte-
grating various information sources, fusion techniques can 
not only improve the accuracy of signal decoding but also 
help to build more complex and intelligent application 
scenarios.
To summarize, multimodal brain-computer interface 
technology is in a stage of rapid development and has a 
promising future application in medical, education, enter-
tainment and other fields. With the continuous progress of 
technology and in-depth research, we expect that this field 
will bring more innovative solutions and practical applica-
tions to further promote the boundaries of human-comput-
er interaction.
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