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Abstract:
This paper delves into the Hahn-Banach Theorem, 
elucidating its significance and applications in functional 
analysis and topology. It commences by highlighting 
foundational concepts in normed linear spaces and 
gradually builds towards a comprehensive exploration 
of the theorem’s multiple forms. By reconstructing the 
proof from basic principles, the paper demonstrates the 
theorem’s versatility in extending linear functionals from 
subspaces to universal sets, initially within real linear 
spaces and subsequently in complex scenarios. The proof 
employs techniques like sublinearity, seminorms, and 
Zorn’s Lemma to articulate the theorem’s efficacy in both 
real and complex linear spaces. This study also discusses 
the adaptation of the theorem in normed linear spaces, 
where the absence of an explicit dominating function 
presents unique challenges, and continuity replaces 
boundedness to establish the theorem’s claims. Through 
rigorous analysis, the paper confirms the theorem’s pivotal 
role in linking points and functions within normed spaces, 
thereby enhancing understanding of dual spaces and 
their topological implications. Additionally, the practical 
applications of the theorem in establishing the existence of 
linear functionals and exploring the relationship between 
points and functional norms in normed spaces are also 
detailed, underscoring the theorem’s enduring relevance in 
mathematical discourse.

Keywords: Hahn-Banach theorem; normed linear space; 
functional analysis; topology.

1. Introduction
Linear algebra, a cornerstone of mathematical edu-
cation, introduces students to fundamental concepts 
such as linear spaces and linear maps. Traditionally, 
these studies focus on finite-dimensional spaces, 

where the existence of a finite basis simplifies op-
erations and theoretical explorations. However, as 
one advances into the realm of functional analysis, 
the infinite-dimensional spaces defy some of these 
simplifying features, such as the lack of a finite basis, 
which profoundly impacts the approach to studying 
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linear structures. The theoretical frameworks developed 
for finite dimensions, involving methods like mathemat-
ical induction and proof by contradiction, often require 
reevaluation or adaptation in this broader context [1].
The evolution of these concepts into the analytical study 
of functions in real variables introduces additional com-
plexity. For example, notions like the limit of a sequence 
and function continuity, which hold under the structure of 
, find new expressions and implications within the frame-
work of topological spaces. Particularly, a normed linear 
space offers a rich structure for extending many of these 
theories due to its inherent topological properties [2, 3]. 
The early 20th century marked the beginning of a shift in 
how mathematical theories were applied, moving from 
traditional linear equations and integrals to more complex 
structures like normed linear spaces. A significant mile-
stone was achieved in 1936 when Murray extended the 
Hahn-Banach theorem to complex linear spaces, broad-
ening its applicability across various mathematical disci-
plines [4].
This paper is divided into two main sections that explore 
the structural dynamics and theoretical applications of the 
Hahn-Banach theorem within normed linear spaces. The 
first section critically reviews structural results in normed 
linear spaces, setting the stage for a deeper understanding 
of the theorem’s implications. The second part delves 
into the classical forms of the Hahn-Banach theorems, 
discussing their foundational principles and their practical 
applications within these spaces. Through this detailed 
examination, the paper aims to provide a comprehensive 
overview of the theorem’s versatility and its enduring rel-
evance in advancing the field of mathematical analysis.

2. Preliminary Concepts
This part reviews (without proof) the basic notions in 
normed linear space, aiming to lay a foundation for 
Hahn-Banach Theorem later in this paper.
In the definition above ( , )V •  is called a normed linear 
space, which can induce a metric by the norm of the dif-
ference of two vectors. Furthermore, it can induce a topol-
ogy through this metric. Therefore, all notions in topology 
can be applied to normed linear space, such as openness, 
closeness, compactness, continuity, convergence, etc.
Continuity is a commonly investigated concept in mathe-
matical analysis, its definition in topology is as below.
The definition itself has some application in the Open 
Mapping theorem [5]. For example, determine the conti-
nuity of an inverse function.
In normed linear space, there are some alternative ways 
to judge continuity from other perspectives. Among them 

a significant proposition is that continuity is equivalent to 
boundedness, which allows one to transfer question in-
volving continuity to finding an upper bound.
The topological dual space requires one more condition 
that such linear functionals need to be continuous. Note 
that dual space refers to topological dual space in the fol-
lowing text.
There are many studies on the relation between dual space 
and original space and building an isomorphism from 
original space to double dual space [6].

3. Hahn-Banach Theorem
First review some terminology involved in several forms 
of Hahn-Banach Theorem.
Definition 2.1(sublinear & seminorm): Moreover, if p also 
satisfies p x p x( ) ( )λ λ= for any x X∈ , λ∈ , then p  is 
called a seminorm.
To prove Hahn-Banach Theorem, one can use the follow-
ing Zorn’s Lemma.
Proof: see [7].
Several forms of Hahn-Banach Theorem are given below 
as theorem 2.3, 2.4, 2.5.
Proof: The statement is trivial if Y X= . Suppose Y  is a 
proper subset of X . One can first linearly extend l  to a 
subspace which contains Y  while maintaining the proper-
ty that l  is dominated by p .
 l y az l y al z( ) ( ) ( )+ = +  (1)
Here l z( ) is an undetermined real number now. One can 
readily confirm that l  is a linear functional on Z . Next to 
show l z( )  can be chosen to satisfy that l  is dominated by 
p  on Z .
 l y al z p y az( ) ( ) ( )+ ≤ + , ∀ ∈ ∈y Y a,    (2)
Since p  is a sublinear, (2.2) can be reduced to the case 
when a =1  and a = −1 :
l y l z p y z( ) ( ) ( )+ ≤ + , l y l z p y z( ) ( ) ( )′ ′− ≤ − , ∀ ∈y y Y, ′ , 
this is equivalent to.
 l y p y z l z p y z l y y y Y( ) ( ) ( ) ( ) ( ),  ,′ ′ ′− − ≤ ≤ + − ∀ ∈  (3)
Notice that y  and y′  are two different and independent 
variables, the leftmost term of (2.3) is a function of y′  
and rightmost term is a function of y .
In fact, for any y y Y, ′∈ , observing that z term is vanished 
when sum up the terms in the brackets of p .
Making a small deformation of the above inequality gives 
(2.4), and thus (2.3) is verified.
To see (2.2), it can be divided into three cases:
a = 0 , trivial a > 0 .
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l y al z a l y l z a l y l z

ap y z p y az

( ) ( ) ( ( ) ( )) ( ( ) ( ))

( ) ( )1
a

+ = + = + ≤

+ = +

1 1
a a  (4)

a < 0 The above argument gives a particular extension of 
l . This theorem requires one to give a universal extension 
(i.e. extend l  to X ). To do this, one interesting idea is to 
consider the set consisting of all such extensions. The 
question is transferred to show the universal extension is 
one element in this set.
Define an order on S  by ( , ) ( , )Z l Z l1 1 2 2≤  if Z Z2 1⊃  and 

l l2 1|Z1
= . For any chain {( , ) | }Z l Iα α α ∈    in S , let 

Z Z=
α


∈I
α . Define l′  on Z  by l′  equals to lα  on Zα . The 

linearity of l′  is obvious and l′  is dominated by p  on Z . 
So ( , )Z l S′ ∈  and ( , )Z l′  is an upper bound for chain 

{( , ) | }Z l Iα α α ∈  by construction. By Zorn’s Lemma, S  

has a maximal element ( , )Z L0 . By previous argument, Z0  
must be the whole space X . Otherwise, l  can be extend 
to a larger subspace than Z0 , which yields a larger ele-

ment in S . ( , )X L  is the desired extension.
Remark: This proof draws inspiration from the ideas dis-
cussed on pages 19-21 in reference [8]. The primary utili-
ty of this theorem lies in its ability to extend a linear func-
tional from a subspace to a universal space, showcasing 
an elegant result of existence under specific conditions. 
This reflects the mathematical concept of expanding local 
properties to a universal context. Theorem 2.3 applies spe-
cifically to linear spaces over the field (R) . A pertinent 

question arises: does the theorem hold for the field (C ) ? 
The answer is affirmative, though it imposes a stricter re-
quirement that the functional must be a seminorm.
To substantiate this, it suffices to demonstrate the scenario 
when the field is (C ) . This adaptation of the theorem in-
volves extending the functional to the universal set, paral-
leling the form presented in Theorem 2.3. However, since 
Theorem 2.3 is framed within the context of the real num-
bers, an approach to address the complex case involves 
initially separating the real and imaginary parts of the 
complex numbers involved. This method allows the theo-
rem’s application to be adapted suitably for complex fields 
by building on the logical structure established for the real 
case..
Let f g ih= + , where g  and h  are both real-valued linear 
functions on Y . Next to find a relation between g  and h  
so that f  can be expressed by only one function. Substi-

tute iy  into the expression to get

 
− + ∀ ∈
g iy ih iy f iy if y i g y ih y

h y ig y y Y
( ) ( ) ( ) ( ) ( ( ) ( ))
( ) ( ),

+ = = = + =
 (5)

Taking real part on both sides can get − =h y g iy( ) ( ) . So 
f y g y ig iy( ) ( ) ( )= − .
The plan is to use the previous result for g , the only re-
maining thing is to show that g  is dominated by p . Actu-
ally g y g y f y p y( ) ( ) ( ) ( )≤ ≤ ≤ , ∀ ∈y Y . By theorem 

2.3, there exists a  − linear functional G X: →  such 
that G g|Y =  and G  is dominated by p  on X .
Next to construct the function F , since F  needs to be the 
extension of f  to the whole space, F  should have a very 
similar structure with f . Notice that one has already got 
G  as the extension of g  just now.

Finally show that F  is dominated by p  on X : This can 
be done by considering the exponential representation of 
F x( )  to  remove the module.  For  any x X∈ ,  le t 

F x re( ) = iθ . Since F x( )  is real and p  is a seminorm on 
X ,

e p x p x

F x r e F x F e x G e x p e x
−

( ) ( ) ( ) ( ) ( )
iθ ( ) ( )

= = = = ≤ =

=

− − − −i i i iθ θ θ θ

 (6)

Remark: This proof refers to the idea of page 144. It uses 
the method of separation of real and imaginary part and 
exponential representation in complex analysis [9].
When a linear space equips with a norm, it gets some ex-
tra properties. This theorem has another form on normed 
linear space as following, it does not require an explicit 
dominating function anymore, but it needs the local func-
tional f  to be continuous. Furthermore, the extended 
function keeps the norm unchanged.
Proof: This theorem also requires generalizing a local 
function f  to the whole space X  just like previous two re-
sults. The idea is again to use the previous theorem 2.4. 
However, there is no dominating function given in the 
conditions. To solve this problem, one can construct a 
dominated seminorm for f  as following [10].

Can deduce that f f y F= ≤
y Y y∈ =
sup ( )

, 1
. Combining 

these two results can get the desired equality.
Remark: The idea of constructing the dominated semi-
norm p  in this proof refers to [9] page 145.
Hahn-Banach Theorem is frequently applied in normed 
linear space to find relations between points and functions 
based on theorem 2.5. Here are two corollaries.
Corollary 2.6: Let X  be a normed linear space over   
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and x X0 ∈ . Then there exists f X∈ *  such that f
X * =1  

and f x x( )0 0= .

Proof: If x0 = 0 , the statement is trivial since one can take 

f  to be an arbitrary unit vector in X * . Suppose x0 ≠ 0 . To 
use theorem 2.5, one needs to construct a subspace and a 
functional with norm 1 on it. A feasible way is to consider 
the linear span of the point x0 .

L e t  Z x= ∈{ | }λ λ0  .  D e f i n e  h Z: →   b y 

h x x( )λ λ0 0=  for any λ∈ . One can readily confirm 

that h  is linear. The boundedness of h  is also necessary. 
In fact, for any z Z∈ , z x= λ 0  for some λ∈ .

h z h x x x x z( ) ( )= = = = =λ λ λ λ0 0 0 0 . From this 

one can get h Z∈ *  and h =1 .
Remark: This corollary has a more concise form com-
pared to original Hahn-Banach Theorem. It only requires 
a normed linear space and a point in it to get an existence 
result, which means that it is convenient to use this result 
in any situation involving a norm. Below is a direct corol-
lary.
Proof: One direction is trivial, just by norm inequali-

ty,
f X f∈ =

sup ( )
*, 1

f x x0 0≤ . For the other direction, one can 

find a particular f  and apply the property of supremum. 
Combine these two inequalities can get desired result.
Remark: This corollary reveals the relation between the 
norm of a point and the continuous linear functional act-
ing on this point. What makes it interesting is that the 
definition of norm of continuous linear functional is 

f f x=
x X x∈ =
sup ( )

, 1
. Compare this with the formula in cor-

ollary 2.7 one can find that they look like just changing 
the position of point and functional.
Hahn-Banach Theorem has a generalized form in topolog-
ical vector space.

4. Conclusion
This paper has comprehensively explored the Hahn-Ban-
ach theorem, an essential principle in functional analysis 
and topology, demonstrating its fundamental role and 
extensive applications within the framework of normed 
linear spaces. Through meticulous analysis, the paper not 
only revisits the foundational proofs of the theorem but 
also extends these concepts to complex and normed linear 
spaces. By delving into the practical aspects of the theo-

rem, such as the extension of linear functionals and the 
relationship between point norms and functional norms, 
this study reinforces the theorem’s profound impact on 
modern mathematical analysis. The discussions herein 
have elucidated the theorem’s ability to generalize local 
properties to universal contexts, thereby providing crucial 
insights into the structure of dual spaces and the inter-
play between points and functionals. Looking forward, 
the paper sets the stage for further research in several 
promising directions. One such area involves exploring 
the Hahn-Banach theorem within the broader scope of 
topological vector spaces, where the interactions between 
topology and linear functional could yield new theoretical 
insights and applications. Additionally, the potential to 
apply these concepts to emerging fields such as data sci-
ence, quantum computing, and complex systems theory 
presents an exciting frontier. Future studies could also fo-
cus on developing computational algorithms that leverage 
the theorem’s principles to solve real-world problems in 
engineering and physics more efficiently. By expanding 
the applications of the Hahn-Banach theorem and explor-
ing its implications in various modern contexts, ongoing 
research can continue to build on the robust foundation 
provided by this pivotal mathematical theorem.
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