
ISSN 2959-6157

Dean&Francis

767

Abstract:
Vehicle weight is a key factor affecting active control 
strategies and safety in modern days. The manuscript 
presents a refined approach for estimating automobile 
mass that integrates a model of the car’s longitudinal 
dynamics along with an iterative least squares technique 
that incorporates a diminishing factor. A weight estimation 
model is developed and tested under steady speed 
conditions. The study introduces a technique for real-
time determination of vehicle weight by leveraging data 
from the control area network (CAN) bus and employing 
a recursive least squares approach that incorporates a 
forgetting factor. Real vehicle tests show that the method 
has a small error at low and medium speeds, but a large 
error at high speeds. The method utilizes CAN bus data 
to minimize the need for additional sensors, which helps 
reduce costs. It also provides good responsiveness and 
efficiency. This manuscript delves deeper into the method’s 
practical viability and its successful application in real-
world scenarios.

Keywords: Recursive least squares; CAN bus data; Ve-
hicle longitudinal dynamics model.

1. Introduction
As the automotive industry keeps growing, the rise 
of smart vehicles and self-driving technologies has 
set higher standards for vehicle control systems. In 
contemporary vehicle engineering, prioritizing the 
augmentation of motorist protection and automobile 
steadiness is of utmost importance. Getting accurate 
estimates of vehicle parameters can greatly improve 
vehicle control and smart driving decisions, making 
active safety technologies more practical. Lately, ow-

ing to improvements in vehicular electronic systems, 
the least squares technique used to ascertain the mass 
of automobiles has attracted considerable interest. 
The least squares method (LSM) has become a pop-
ular choice for many estimation problems because 
it’s simple and effective. Accurately figuring out key 
vehicle parameters like mass, inertia, and drag in 
real-time is crucial for keeping the vehicle safe and 
ensuring precise control. Use the least squares meth-
od (usually implemented through linear regression) 
to study car Engineering [1].
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For example, research by Yuan Feng and his team from 
Tongji University (2012) used a segmented acceleration 
method on electric wheel drive platforms to estimate 
rolling resistance and mass with RLS [2]. Similarly, Li 
Yuanfang from Jilin University proposed a real-time ve-
hicle mass estimation method using RLS with adaptive 
forgetting factors to adjust for changes in vehicle dynam-
ics [3]. Throughout the evolution of automotive technolo-
gies, ensuring the protection of drivers and bolstering the 
steadiness of the vehicle has perpetually remained at the 
forefront of carmakers’ duties. When vehicle parameters 
are known, many control decisions can be optimized and 
improved more effectively.
However, traditional methods to determine these param-
eters usually rely on extra sensors, which not only add to 
the hardware costs but might also affect the overall perfor-
mance of the vehicle.This research proposes a technique 
that employs a vehicle longitudinal dynamics model along 
with a recursive least squares algorithm incorporating a 
forgetting factor, aimed at real-time determination of ve-
hicle mass to address this issue. This approach aims to cut 
costs while improving accuracy [4].

2. Basic idea of the least squares meth-
od

2.1 Fundamental concept of the least squares 
approach
The least squares method is a common statistical tool used 
in regression analysis. The main idea is to estimate the 
model’s parameters by minimizing the sum of the squared 
differences between the observed values and the values 
predicted by the model. For linear models, the basic for-
mula for the least squares method is as follows:

 β = (x x X yT T)−1
 (1)

In this context, ‘y’ represents the array of data points 
being observed, ‘x’ denotes the grid of independent vari-
ables, and ‘β’ signifies the array of coefficients that require 
estimation.
The least squares technique is a mathematical approach 
employed to determine parameter valuations that reduce 
the sum of squared residuals (SSR), which reflects the dif-
ference between predicted outcomes from a model and the 
actual data points. The formula indicates that for a given 
observation data ( x y x y1, 1 2, 2), ( )... (x yn n, ).

2.2 Linear Regression Model
The linear regression approach represents a method of sta-
tistical analysis which employs regression techniques to 

ascertain the quantitative relational dependency amongst 
several variables. Within real-world scenarios, the usage 
of multivariate linear regression models tends to be preva-
lent. Consider a linear regression model:
 y xi i i=β β0 1+ + ?  (2)

where yi  is the i -th observation, xi  is the corresponding 

explanatory variable, βo  and β1  are the model parameters 
to be estimated. The error term, denoted as ϵi, is generally 
presumed to follow an independent and identically distrib-
uted pattern, with a mean assumed to be zero. The objec-
tive of the least squares technique is to determine the val-
ues of βo and β1 in such a way as to reduce the sum of the 
squared residuals to its minimum.

 Rss y X= +∑
i=

n

1
( )i− (β β0 1 1 ) 2  (3)

2.3 Weighted Least Squares Method
The Weighted Least Squares technique, often abbreviated 
as WLS, serves as an appropriate approach for addressing 
issues of unequal variance, or heteroscedasticity, within 
dataset regression analysis. When the error variance of 
the data is not constant (i.e.In essence, WLS enhances the 
model’s accuracy by allocating varying weights to distinct 
data points, with the underlying principle being to assign 
greater importance to points exhibiting lesser variance 
in error. This method operates by favoring these more 
reliable observations in the model estimation process. 
Ultimately, the aim of WLS is to reduce the total of the 
weighted squares of the residuals.

 WRss w y x= − −∑
i=

n

1
i i i( )β β0 1

2  (4)

In automotive engineering, the least squares estimation 
can be used to estimate a vehicle’s mass, inertia, and drag. 
These parameters are key for controlling a vehicle’s dy-
namics, especially in smart driving systems. Acknowledg-
ing these factors instantaneously can greatly enhance the 
precision of management and the security of automobiles.

3. Principles of Vehicle Mass Identifi-
cation Methods

3.1 Longitudinal Dynamics Model
The model for the car’s motion in the forward and back-
ward directions relies on the principles of Newton’s sec-
ond law, which governs how the automobile moves along 
its straight-line path. The acceleration of the vehicle is 
determined by the engine drive minus air resistance, roll-
ing resistance and downhill resistance due to gravity, etc. 
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together, and the basic equation is as follows:
 F M a F F Fdriving Airresistance Rollingresistance Slo= + + +. peresistance  (5)
In this context, F driving represents the propelling force, 
while M symbolizes the mass of the vehicle, and a stand 
for its acceleration. The additional forces correspond to 
aerodynamic drag, friction from contact with the ground, 
and resistance due to inclines, in that order. Once these 
variables are determined, it is possible to retroactively de-
termine the value of M [5].

3.2 Recursive Least Squares with Forgetting 
Factor
The Recursive Least Squares (RLS) algorithm dynamical-
ly estimates the parameters of a system as it operates. It 
differs from the conventional least squares technique by 
perpetually refining the model’s parameters, thereby ac-
commodating temporal variations within the system. 
When you add a forgetting factor to RLS, it further im-
proves the method by reducing the impact of older data on 
the results, giving more importance to new data. The 
mathematical expression for this is shown below:

 θ θ ϕ θt t t t t t+1 = + −K y  
T  (6)

 Kt = λ ϕ ϕ+
Pt tϕ

t t t
T P

 (7)

and

 P Pt t+1 = −
λ λ ϕ ϕ
1  
 
 

P P
+
t t t tϕϕ

t t t
T

T

P
 (8)

In this context, the vector θt  represents the parameters, 

ϕt  stands for the inputs, yt  denotes the resulting output, λ 

refers to the decay coefficient, Pt  constitutes the variance 

matrix, and Kt  embodies the matrix of gains [6].

3.3 Applications of Vehicle Mass Recognition

3.3.1 Limitations of Traditional Methods Traditional 
Vehicle Mass

Identification techniques usually depend on extra sensory 
devices to gauge physical metrics like acceleration, speed, 
and pressure. While these methods can provide fairly 
accurate estimates, they suffer from the following prob-
lems. Elevated expense for equipment: The inclusion and 
upkeep of extra sensing units escalate the vehicle’s overall 
expenditure. Escalating intricacy in the system: Incorpo-
ration of sensing devices and data analysis necessitates 
extra hardware and computational power. Vulnerability to 
external elements: sensor precision is readily influenced 
by surrounding influences like thermal levels, moisture, 
and the state of the roadway [7]. Therefore, even if tradi-

tional methods can theoretically achieve high-precision 
mass identification, there are some limitations in practical 
applications.
3.3.2 Optimisation method using CAn bus data

To surpass the constraints inherent in conventional ap-
proaches, the study introduces a vehicle quality deter-
mination technique utilizing data from the control area 
network (CAN) bus, which serves as a prevalent commu-
nication network within contemporary cars to facilitate 
data exchange among various control modules. By utiliz-
ing the available CAN bus data, the method enables re-
al-time vehicle quality identification without the need for 
additional sensors.
Central to the approach is the integration of a dynam-
ic model for the vehicle’s anterior/posterior movement 
paired with a recursive least squares technique that in-
corporates a diminishing factor. Given that the CAN bus 
data encompasses critical parameters including velocity, 
acceleration, and propulsive force, this approach notably 
diminishes the financial burden associated with hardware 
and streamlines the complexity of the system’s design. 
Moreover, the approach reliably keeps hardware expenses 
to a minimum, facilitates a more straightforward system 
configuration, and preserves the precision of the identified 
outcomes.
Modern vehicles often employ the Controller Area Net-
work (CAN) bus as a communication system to facilitate 
the transfer of data among various control modules. By 
using the data already available on the CAN bus, such as 
vehicle speed, engine torque, acceleration, and other in-
formation, it’s possible to achieve low-cost and efficient 
quality recognition without needing extra sensors.
3.3.3 Advantages and Challenges

There are some advantages. Lower hardware costs: No 
need for extra sensors since the CAN bus data already in-
cludes the necessary physical information. Good real-time 
performance: The CAN bus transmits data quickly, mak-
ing it suitable for real-time systems. Strong reliability: 
Even under tough working conditions, the vehicle’s iden-
tification results still maintain a high level of accuracy.
There are also some challenges. Accuracy issues at high 
speeds: At higher speeds, due to factors like air resistance 
and other non-linear influences, the traditional dynamics 
model struggles to keep mass identification accurate. This 
paper shows that around 40 km/h is a critical point, above 
which the recognition error increases significantly. Adjust-
ing to dynamic changes: The vehicle’s mass can change 
due to load variations, and the system needs to adapt 
quickly to these changes to maintain accuracy.
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4. Experimental Verification and Re-
sult Analysis

4.1 Experimental Setup
To ascertain the efficacy of the approach, the author per-
formed tests utilizing real-world vehicular data. This pa-
per employed a typical sedan for these tests and gathered 
CAN bus information at varying velocities. The informa-
tion collected encompassed parameters such as vehicular 
velocity, acceleration, propulsive force, and engine torque. 
Throughout the testing phases, the car underwent oper-
ation across various loading scenarios, allowing for an 
assessment of the approach’s functionality under assorted 
speed and load conditions. This not only helps dynamic 
control, but also provides important assistance for intelli-
gent driving decision-making, affecting the feasibility of 
modern high-precision active safety technology.
In the study, a vehicle model with a 4.5-tonne mass was 
employed, with data acquisition occurring via the CAN 
bus as the vehicle was subjected to varying loads and ve-
locities. Critical metrics such as the speed of the vehicle, 
its acceleration, and the engine’s torque were encom-
passed within the collected data set. Subsequently, this 
information was integrated into the longitudinal dynamics 
model of the vehicle. Using the recursive least squares al-
gorithm, the vehicle’s mass was determined in a real-time 
context [8].

4.2 Experimental Results
The trial findings indicate that the suggested technique 
can precisely assess the vehicle’s weight to within a 5% 
margin of error at speeds ranging from 20 to 60 kilometers 
per hour. In particular, stable identification results were 
obtained under uniform speed conditions. Conversely, the 
mistake associated with the standard approach escalates 
with velocity, primarily attributable to the vehicles’ in-
creasingly intricate dynamic properties when traveling at 
elevated speeds.
Furthermore, the studies demonstrate that incorporating a 
forgetting factor into the recursive least squares algorithm 
considerably mitigates the impact of outdated information 
on the output of the recognition process and enhances 
the system’s agility in adapting to the vehicle’s evolving 
conditions. When confronted with substantial variations in 
load, the method proposed in this paper markedly outper-
forms the conventional recursive least squares technique 
that lacks a forgetting factor in terms of recognition preci-
sion.

4.3 Advantages in Practical Application
The technique suggested within this article offers tangible 
advantages when applied in practical scenarios. First, be-
cause it uses CAN bus data, there’s no need to add extra 
sensors, which helps cut down on hardware costs. Addi-
tionally, the recursive least squares approach, when inte-
grated with a diminishing coefficient, has the capacity to 
adapt to alterations in the vehicle’s dynamic performance, 
thereby enhancing the precision of the identification pro-
cess. Lastly, the method is not too complex to compute, 
making it easy to implement in real-time on vehicle con-
trollers.

5. Conclusion
To summarize, this study introduces a technique for re-
al-time determination of vehicle weight Through experi-
ments, it’s been shown that this method can achieve accu-
rate mass identification, particularly at low and medium 
speeds, and it performs exceptionally well under steady 
driving conditions. This method simultaneously dimin-
ishes the dependence on extra equipment, which trims 
expenses, and it amplifies the immediacy and resilience of 
the detection mechanism, thus boosting its dependability 
in actual use cases. In future research, there’s potential to 
further improve this method by integrating big data anal-
ysis and machine learning. These innovations have the 
potential to refine the precision of the detection systems, 
enhancing their accuracy and versatility across various 
vehicular environments. As smart vehicles and autono-
mous driving technology continue to advance, the scope 
of this method could be expanded to include real-time 
identification of other important vehicle parameters, such 
as inertia, resistance, and suspension characteristics. En-
abling a deeper grasp of car mechanics could significantly 
bolster the evolution of advanced, dependable smart driv-
ing technologies. Furthermore, real-time tracking of such 
dynamics may lead to the formulation of more effective 
vehicular management tactics, thereby improving road 
safety and vehicular efficiency. Persistently perfecting and 
broadening this technique stands to be pivotal in the forth-
coming advancements of vehicle technology.
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