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Abstract:
Predictive Analysis of Diseases Using Bayesian Inference 
and Markov Chain Monte Carlo Methods” focuses on 
applying Bayesian inference and Markov Chain Monte 
Carlo to make prediction and analyzation of certain 
disease, including a general case study and Alzheimer’s 
Disease. The first application shows how, in the event 
that a patient receives a false diagnosis, the Bayesian 
inference can be used to test the likelihood that the 
patient has a condition. This example demonstrates how 
Bayesian inference can lead to a closer objective reality by 
iteratively modifying the prior probability to the posterior 
probability depending on new information. In the second 
application on Alzheimer’s disease, the regression model 
parameters (intercept and slope) are estimated using the 
Gibbs sampling approach and two datasets including 
data on Alzheimer’s patients. The final model, tested on 
a separate dataset, achieved an accuracy of 62%. The 
study demonstrates the potential of Bayesian and MCMC 
approaches in disease prediction, suggesting a pathway to 
more robust models in medical analytics.

Keywords: Bayesian inference, Gibbs Sampling, Mar-
kov Chain Monte Carlo, logistic regression.

1. Introduction
As some diseases have high mortality and high rate 
of misdiagnosis, fields like medical research and 
public health have long been finding robust predic-
tive models for predicting disease accurately and 
effectively to offer patients the precise result, make 
the most wise decision, and efficient resource allo-
cation. Traditional statistical methods for prediction 
have several limitations in dealing with complex sit-

uations and large dataset. When paired with Markov 
Chain Monte Carlo (MCMC) techniques, Bayesian 
inference provides a potent framework for addressing 
these issues. By integrating prior knowledge with 
new evidence, Bayesian inference is able to make 
more accurate results [1].
Recent studies have highlighted the effectiveness of 
combining Markov Chain Monte Carlo with Bayes-
ian inference to make predictions in various fields, 
including using Bayesian approach to predict perfor-
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mance of a student, deformation during tunnel construc-
tion, etc. Still, Bayesian inference and MCMC are valu-
able in predicting disease, and recent research uses gene 
expression data to predict cancer survival times, patient 
radio-sensitivity, etc. Furthermore, MCMC algorithms 
such as Gibbs sampling have proven effective in estimat-
ing complex model parameters where traditional methods 
fall short. These techniques are particularly valuable in 
the case of Alzheimer’s disease since the various variables 
in such disease, including patients’ age, genetic sensitiv-
ity. Given this complexity, the combination of Bayesian 
Inference and MCMC can provide with a more accurate 
predictions, ultimately leading to better decision-making 
and personalized treatment strategies [2].
The structure of this research study is as follows: The fun-
damentals of Markov Chain Monte Carlo and Bayesian 
inference are covered in Section 2, including dealing with 
random variable case, calculating the posterior distribu-
tion, selecting the prior distribution in Bayesian inference, 
and Importance sampling and Gibbs Sampling in MCMC. 
The third section are two applications of applying Bayes-
ian inference and MCMC to make disease predictions, in-
cluding predicting a general assumed disease and Alzhei-
mer’s disease. The fourth part of the paper demonstrates 
the conclusion, discussion, and future expectations.

2. Methods and Theory

2.1 Bayesian Inference

2.1.1 Introduction of Bayesian Inference

By using Bayes’ theorem, the statistical reasoning method 
known as “Bayesian inference” updates a hypothesis’s 
probability based on fresh information or evidence. At its 
core, Bayesian reasoning estimates a posterior probability 
in the form of a prior distribution by utilizing previous 
knowledge. Bayesian inference is an important technique 
in mathematics. Bayesian inference of updating informa-
tion plays an important role in data series detection. In ad-
dition, Bayesian inference has applications in many fields 
due to its predictability, including scientific research, 
engineering, medical practice, sports, legal research, and 
philosophy. The formulation of Bayes’ Theorem is [3]:

	 P X(θ | ) = P X P(
P X
|
(
θ θ)

)
( ) � (1)

Where P( |θ X) is the posterior probability, which shows 
how likely the parameters are based on the data that have 
been observed. P X( | )θ  stands for probability or likeli-
hood of the data given the parameters. P(θ ) is the prior 
probability, the first impression of the parameters prior to 

looking at the data. P X( )  is the marginal likelihood, the 
total probability of the observed data.
2.1.2 Discrete Random Variable Case

When random variables in the hypothesis are discrete, the 
prior distribution is expressed as a discrete probability 
distribution. In this condition, the formula of calculating 
the posterior probability changes to summing the overall 
possible discrete states [4]:

	 π θ( | x) = ∑
p x

j j j

(
p x(

|θ π θ

|
i i

θ π θ
)
)
(
(
)
)

� (2)

For this equation, the parameter θ is discrete. Thus, by 
using the observed data and the previous distribution, one 
can still compute the posterior distribution.
2.1.3 Calculation of Posterior Distribution

The probability function and the prior distribution are 
combined to get the posterior distribution. The integral of 
the joint distribution over all possible values of θ is used 
to calculate the marginal density function, or m(x):

	 m x p x d( ) = ∫ ( |θ π θ θ) ( ) � (3)

The posterior distribution is then:

	 π θ θ π θ( x p x) = ∝
p x(

m x
|θ π θ
(
)
)
( ) ( | ) ( ) � (4)

This approach allows for the computation of the posterior 
distribution, even when θ is continuous, by integrating 
over all possible parameter values [5].
2.1.4 Selection of Prior Distributions

One important component of Bayesian inference is the 
selection of the prior distribution. In situations when pre-
vious data regarding the parameter θ is not accessible, one 
may choose a non-informative prior, like a uniform distri-
bution:

	 π θ( ) = 
0,

c,θ
θ
∈Θ
∉Θ

� (5)

where Θ is the parameter space, and c is a constant. In 
order to maximize the impact of the facts on shaping the 
posterior belief, non-informative priors are selected so as 
to have little effect on the posterior distribution.

2.2 Markov Chain Monte Carlo algorithm

2.2.1 Introduction to Markov Chain Monte Carlo algo-
rithm

MCMC, Markov Chain Monte Carlo algorithm, is a dy-
namic method used to deal with the slow speed caused by 
the extensive computational complexity of static Monte 
Carlo algorithms based on Markov Chain and Bayesian 
theory. The Monte Carlo algorithms are widely used for 
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numerical estimation in Bayesian inference. This tech-
nique is used to sample at random in the approach for 
estimating numerical outcomes; it is then considered im-
portant for obtaining solutions for complex mathematical 
integral calculations. So they allow for the approximation 
of integrals that are otherwise difficult to solve [6].
2.2.2 Introduction to Importance Sampling

While Monte Carlo algorithms typically rely on uniform 
distribution to obtain results such as integrals and areas, 
there are many cases where sampling from other distri-
butions, such as normal or Poisson distributions, is more 
appropriate. This is where importance sampling comes 
into play. A weighted average of random drawings from 
a different distribution is used to approximate a mathe-
matical expectation with regard to a target distribution in 
a group of Monte Carlo techniques known as importance 
sampling. Importance sampling, together with MCMC, 
serves as a basis for simulation-based methods of numeri-
cal integration.”
2.2.3 Gibbs Sampling

Gibbs sampling is a special form of the Metropolis-Hast-
ings algorithm. Due to its simplicity and ease of imple-
mentation, it is also a widely used MCMC algorithm. 
Gibbs sampling is primarily used for sampling and esti-
mation of joint distributions of multivariate variables. It 
defines the full conditional distributions from the joint dis-
tribution, and for a given variable dimension, it fixes the 
other dimensions and uses the full conditional distribution 
for sampling, sequentially obtaining the iterative values 
for each dimension of the variables [7].
The process involves the following steps.
1. Initialize the state X x x x0 0 0 0= ( , ,..., )1 2 m

2. Set t = 0
3. For each variable xi , sample from the conditional dis-
tribution given the other variables:
p x x x x x( | ..., , ,...,i i i i m

( 1) ( 1) ( 1)t t t t t+ + +
− +1 1 )

4. Increment t and repeat the process until convergence.
Gibbs Sampling offers several advantages, making it a 
powerful tool in MCMC methods. One of its benefits is its 
high convergence speed, as the acceptance probability is 
always 1, eliminating the need for rejections. Additionally, 
it is particularly effective in handling high-dimensional 
data, as it can efficiently explore complex probability 
spaces. Furthermore, by sequentially updating one vari-
able at a time while keeping others constant, Gibbs Sam-
pling simplifies the sampling process, reducing computa-
tional complexity and improving efficiency.

3. Applications

3.1 A basic example of Bayesian Inference
Given a disease with an incidence rate of 0.2%. If a per-
son has the disease, the test accuracy is 90% (meaning 
there is a 10% chance of not detecting a positive case). If 
a person does not have the disease, the false positive rate 
is 5% (meaning there is a 5% chance of incorrectly report-
ing a positive case). What is the likelihood that a person 
reporting a positive case actually has the illness?
Let H represent having the disease, and E represent testing 
positive. Given that a test result is positive, one wishes 
to determine the probability, or P(H|E), that an individual 
has the illness. The computation is made using the Bayes 
theory and looks like this:

	 P H E( | ) = P E H P H( |
P E(
)×
)
( ) � (6)

The likelihood of being ill is represented by P(H), where 
P(H) = 0.2%. P(E|H) = 90% is the likelihood of testing 
positive provided that an individual has the disease. P(E) 
represents the probability of testing positive.
To calculate P(E), one can scale up the number of people 
tested, for example, to 100,000. Based on the incidence 
rate. There are 200 patients and 99,800 healthy people. 
Among the 200 patients, 180 will test positive, while 
20 will not be detected (negative). Among the 99,800 
healthy people, 5% (4990 people) will test positive (false 
positives), while 95% (94,810 people) will test negative. 
Therefore,

	 P E( ) = = =
180 4990

100000
+ 0.0517 5.17% � (7)

Enter the following into the Bayes theorem to get P(H|E)

	 P H E( | 3.482%) = =
90% 0.2%

5.17%
× � (8)

The result is that the probability of disease is 3.543%, 
which is far less than 90%, and contrary to most people’s 
intuition, the reason is that the number of false positives 
caused by a large number of healthy people is far more 
than that of patients, when there is evidence of “positive 
test”, the probability of disease is increased from 0.2% to 
3.543%, which is far from enough to confirm the diagno-
sis.
3.1.2 Further representation

In the above calculation, one finds that calculating P(E) is 
relatively difficult, and in many cases, it may even be im-
possible to know P(E). In this situation, one needs to use 
another representation of Bayes’ theorem.
Let P(H) denote the probability of H occurring, and H

−
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represent the event of H not occurring, with P( H
−

) denot-
ing the probability of H not occurring. Obviously, 

P H P H 
 
 

−

= −1 ( ) . It is apparent that P(E) can be divided 

into two parts: the point where E and H converge is one 
part, and the junction of E and H

−

 is the other part. Thus, 

P E P E H P E H( ) = ∩ + ∩( )  
 
 

−

. According to the previ-

ous formula P A B P A B P B( ∩ = ×) (( | ) ( ))  substituting 
in, one can obtain

	
P E P E H P E H P E H P H

P E H P H

(

   
   
   

)

|

= ∩ + ∩ = × +

− −

×

 
 
 

−

( ) ( ) ( )
�(9)

Another version of the Bayes theorem can be obtained by 
substituting P(E)

	 P H E( | ) =
P E H P H P E H P H( | |)× + ×

P E H P H(

(

|

)

)×
   
   
   

(
− −

) �(10)

Using this formula, the author does not need to calculate 
P(E). Returning to the initial problem. The likelihood of 
having the illness is represented by P(H), which is P(H) = 
0.2%. P(E|H) = 90% is the likelihood of testing positive 
provided that an individual has the disease. P(E| H

−

) indi-
cates the five percent chance of testing positive in the ab-
sence of the illness. P( H

−

) demonstrates the probability of 
not having the disease = 1 - P(H) = 99.8%. Substitute 
these values into the formula to calculate

	

= =

P H E(

90% 0.2% 5% 99.8%

|

× + ×

)

90% 0.2%

=
P E H P H P E H P H(
×

| |)× + ×

P E H P H(

(

|

)

3.482%

)×
   
   
   

(
− −

)

�(11)

The likelihood that the patient has the illness rises from 
0.1% to 4.721% with this positive test result. Assume this 
individual administers another test and receives a positive 
result once more. What is the likelihood that they current-
ly have the illness?
The author will still use Bayes’ theorem to calculate, but 
the prior probability P H( )  is no longer 0.2%; it is now 

3.482%, while P E H( | )  and P E H 
 
 

|
−

 remain un-

changed. Calculate the new P H E( | )

	
=

P H E(

39.37%

| ) =
90% 3.482% 5% 1 3.482%× + × −

90% 3.482%×
( ) � (12)

The result is 39.37%. Two positive test results increase 
the prior probability from 0.1% to 3.482%, and then to 
39.37%. As seen, the core idea of Bayes’ theorem is to 
continually adjust the prior probability to the posterior 
probability based on new evidence, bringing it closer to 
the objective truth.

3.2 Alzheimer Disease Prediction
In this case, the author applies the algorithm to the inves-
tigate the Alzheimer patients, where age is the variable. 
First, the author selected two datasets of characteristics 
associated with Alzheimer’s disease; the first was used to 
determine the regression model’s prior distribution of the 
parameters, and the second served as an analytical data 
set. Second, from the first data set, the author randomly 
samples 60% of the data in a cyclic manner. Each time 
people apply traditional maximum likelihood method to 
fit the intercept and slope of the regression model and 
record it in an array. Then one plotted it and found that 
it’s approximately conformed to normal distribution, so 
one used the built-in function in Python to fit it into the 
normal and obtain the mean and variance, which is the 
hyper-parameters one needs for the algorithm. Then, for 
the second data set, people divide it into to part to be used 
as the analytical data. 70% as the test set while 30% as the 
training set.
·The theoretical induction is the following. 1) Assume that 
two parameters in the logistic regression model are inde-

pendent and Identically distributed as follows β  N ( β
−

, 

Σ 2 )and α  N(α
−

, σ 2 ). 2) Then one will have the proba-

bility density function p e(β ) =
(2π

1

)d Σ

−
1
2
β βT∑

−1
ˆ

 and 

p e(α ) =
(2π σ

1
) 2

( )α µ
2
−
σ 2

2

. 3) If the author substitutes the 

previous function into this nonuniform one, one can get

	
(

p Y p p p Y

2

(

π

β α β α β α

)

, ,

−
d

2
+1

e

)
(α µ

∝ =

2
−

σ 2
)2
−

(
1
2
β βT

)
∑
−1

ˆ

(

∏
i=

n

1

)

e
1

− −

+

(
z yi i(

e

1

− zi

)

)
� (13)

·The algorithm based on Gibbs sampling is the following. 
The author samples α0 and β0 from the prior distribution. 
According to previous induction, one can obtain the con-
ditional probability
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	 P Y e(α β , ) ∝
−
(α µ

2
−

σ2
2
)2

∏
i=

n

1

(
1
e
+

− +(

e

β α

− +

xi

(β αx

)

i

1−y

)

i

� (14)

The conditional probability for β has the same form. Thus 
one can sample alpha and beta from their distribution and 
cyclically update them. Repeat the sampling process until 
convergence. From the first data set, one can draw a 3D 
diagram to show the distribution of the intercept and the 
slope. And people have the hyper-parameters as follows: 
µcoeff = 0.0135 ,  µintercept = 0.7787 ,  σ coeff = 0.0102 ,  and 

σ intercept = 0.7899 . After applying the regression model 
and the algorithm to the second data set and the value 
above, one has the results as follows: Intercept = -0.3694 
and Coefficient= -0.0037. After using the test set to test 
the result, the final accuracy rate is about 62%. The proba-
ble reason for the accuracy not being ideal is that people 
only used age to be the independent variable of machine 
learning. If people can obtain more other kinds of data in 
the future, the accuracy rate might be higher.

4. Conclusion
This study introduces the concepts of Bayesian infer-
ence and Markov Chain Monte Carlo (MCMC) methods, 
and explored the application of Bayesian inference and 
MCMC methods for disease prediction, focusing on a 
general prediction of having a disease and Alzheimer’s 
disease. The two applications demonstrate the core idea of 
Bayes’ theorem—the author can achieve a more accurate 
result by calculating the posterior probability infinitely as 
people gain more information. Additionally, by utilizing 
two datasets and employing the Gibbs sampling algorithm 
to estimate the regression model parameters, the accuracy 
of the model achieved 62%. These results demonstrate the 
potential of gaining a more accurate conclusion of com-
plex medical cases by combining Bayesian inference and 
MCMC methods together. However, improvements can be 

made. Since the current model relies on a single variable 
(age), the predictive capacity is limited, and the final ac-
curacy rate is about 62%, which is not an ideal value. In 
order to enhance the accuracy, future research should con-
tain more patient data, such as genetic, environmental, and 
lifestyle factors. Additionally, future works can also in-
clude predictions of other disease based on this approach, 
or integrate machine learning techniques to create a more 
comprehensive models that might improve the strengths 
of both methodologies.
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