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Abstract:
With the current continuous development of brain-
computer interface technology, significant progress has 
been made in both signal processing and application 
areas. The ability to control external devices using 
EEG signals has opened up new possibilities in medical 
rehabilitation. Unlike traditional rehabilitation methods, 
which may be limited by physical constraints, BCI-based 
approaches offer a more intuitive and accessible means 
of interaction for patients with severe motor impairments, 
potentially accelerating recovery and improving overall 
outcomes. Motion imagery brain-computer interfaces can 
provide users with new ways of interacting, improving 
efficiency and experience. By analysing the technological 
developments in the existing literature and comparing 
different approaches. Summarise their current application 
examples and future directions. The review finds that the 
research currently leaves much room for improvement 
in terms of signal decoding accuracy, interference and 
noise handling, user adaptability, and system real-time the 
review summarises the main technological advances and 
current challenges faced in the research, providing valuable 
insights for future research. It is suggested that future 
research should focus on technology integration and data 
parsing capability enhancement to advance the field.

Keywords: Sports Imagination; Brain-computer inter-
face; Navigation robot.

1. Introduction
Motor imagery is the mental rehearsal of motor be-
haviour without apparent physical movement. This 
similarity between imagined and real movements 
makes motor imagery a valuable tool in brain-com-

puter interfaces. Consequently, with the increasing 
development of brain-computer interfaces, there is 
a growing demand for research and development of 
brain-controlled intelligent navigational robots that 
combine mechanical technology, motor imagery, and 
neurology. Imagined movements share commonalities 
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with real movements, including similar neural substrates, 
autonomic responses, and durations. Nowadays, with the 
increasing development of brain-computer interfaces, 
there is a growing demand for research and development 
of such brain-controlled intelligent navigational robots 
that combine mechanical technology, motor imagery, and 
neurology. Currently, there are many research results on 
motor imagery in Parkinson’s and stroke treatment. Build-
ing on these medical applications, researchers are now ex-
ploring broader applications. Brain-controlled intelligent 
navigation robots based on motor imagery brain-computer 
interfaces are emerging as a worthwhile research topic in 
both the service industry and other sectors in the future.

2. Literature review

2.1 Main issues
In recent years, in the field of brain-controlled robot-
ics, foreign scholars have achieved remarkable research 
results. For example, according to a 2018 study titled 
“High-density EEG-based motion intention decoding 
for brain-controlled robot systems”, Professor Andreas 
Kunz, through high-density EEG signal processing and 
deep learning algorithms, has successfully improved the 
decoding accuracy of motion imagery and implemented 
experiments for real-time control. Through high-density 
EEG signal processing and deep learning algorithms, has 
successfully improved the decoding accuracy of motion 
imagery and implemented experiments for real-time con-
trol [1]. This research successfully provides a new per-
spective for future decoding for brain-controlled robots. 
In addition, Jennifer Collinger’s team in the United States 
has conducted in-depth research and made breakthroughs 
in the application of brain-controlled robots to rehabilita-
tion training. In Brain-computer interface for robotic as-
sistance in rehabilitation and mobility published in 2018, 
the practical effects of brain-controlled systems in assisted 
walking and rehabilitation training were demonstrated [2]. 
These scholars’ research provides invaluable guidance and 
inspiration for the development of brain-controlled intel-
ligent navigation robots, offering a strong foundation for 
future advancements.
Domestic scholars have conducted various research on 
the application of motor imagery brain-computer interface 
technology (BCI) in intelligent navigation robots. In terms 
of the definition of EEG signal feature extraction, scholars 
have defined the validity and applicability of feature ex-
traction methods, and explored the rationality of different 
feature extraction methods (e.g., time-domain, frequen-
cy-domain, and time-frequency-domain features). In 2023, 
feature extraction of motion imagery signals is elaborated 

from multiple perspectives, pointing out the advantages 
and disadvantages of different methods in different appli-
cation scenarios. Two main approaches in the design and 
implementation of brain-controlled intelligent navigation 
robots are compared. The first, elaborated by Zhuang et 
al., achieves robot control through EEG acquisition and 
signal processing techniques, focusing on real-time per-
formance and accuracy [3]. The second, proposed by Qiao 
Min et al., decodes motor imagery signals based on deep 
learning algorithms, excelling in processing complex sig-
nal patterns [4].
In terms of application example analysis, the model of 
combining multiple decoding algorithms is now com-
monly advocated in China to improve the stability and 
accuracy of the system as an example. Scholar Chen Yao 
in 2024 argued that the adoption of multimodal fusion has 
many benefits: one is to improve the decoding accuracy of 
the system, the second is to enhance the real-time perfor-
mance of the system, and the third is to enable the system 
to adapt to more application scenarios, such as medical 
rehabilitation and smart home.
From the point of view of China’s current development, 
the application of motion imagery BCI technology in 
intelligent navigation robots develops slowly, and the re-
lated theoretical research is still mainly limited to signal 
acquisition and processing technology, with less research 
on issues such as system integration and application ex-
pansion and personalised regulation, and less research on 
the optimisation of the technology and the evaluation of 
the effect of the actual application.2.1.1 Sub heading

2.2 Comprehensive overview
The principle and workflow of intelligent navigation 
robots using BCI technology typically follow this main 
sequence: EEG signal acquisition, signal pre-processing, 
feature extraction and decoding, robot control, feedback, 
and optimization for practical applications. EEG signal ac-
quisition primarily employs two electrode types: dry and 
wet. Each type has distinct characteristics and applications 
in brain-computer interface technology. Wet electrodes 
require conductive cream and direct skin contact, making 
them less suitable for dynamic scenarios. Domestic re-
search often uses dry electrodes (e.g., Emotiv EPOC+) for 
cost-effective signal acquisition. Another approach using 
E-Prime-based experiments shows high accuracy, with 
training data constructed through MI stimulus acquisition 
corresponding to different imaginary actions.
In the study by Qiao Min et al., EEG data signals were 
preprocessed using Python 3.6 and the mne library [4]. 
They based their feature extraction on power spectral den-
sity features of FFT, utilizing deep learning techniques. In 
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contrast, Jiayu Zhuang et al. employed methods such as 
Short Time Fourier Transform (STFT) or Wavelet Trans-
form to analyze signal variations in time and frequency, 
capturing dynamic EEG activities. Such as Short Time 
Fourier Transform (STFT) or Wavelet Transform to anal-
yse the signal variations in time and frequency and to cap-
ture the dynamic EEG activities. Compared to FFT, STFT 
analyzes spectral information over different time periods 
by sliding a window over the signal. This approach pro-
vides information on both time and frequency to some 
extent. STFT excels in capturing the dynamics of signals 
whose frequency content varies over time. Additionally, it 
handles non-smooth signals with ease.
The degree to which the user is trained in motor imagery 
significantly affects the duration of control. With sufficient 
training, users can maintain the imagery state for longer 
periods, potentially extending from a few seconds to sev-
eral minutes. This improvement in sustained imagery can 
lead to more stable and prolonged control of brain-com-
puter interface systems. According to Do-Yeun Lee et al., 

their relational network-based brain-computer interface 
migration learning method (BTRN) can better extract the 
common features of ME and MI data, thereby improving 
the decoding accuracy of multi-category motor intentions.
The innovative BTRN method leverages motor execution 
(ME) data to enhance the decoding accuracy of motor 
imagery (MI), representing a significant advancement in 
brain-computer interface technology. Overall flowchart on 
the proposed BTRN architecture using MI and ME data-
sets, as shown in Fig. 1. The results show that the BTRN 
method achieves high classification accuracies in both 
horizontal and vertical arm extension tasks, which are 
comparable to the performance using only the MI dataset. 
This suggests that the BTRN architecture has the poten-
tial to contribute to the continuous decoding of MI using 
the ME dataset, which could reduce participant fatigue 
and provide a more consistent brain signal signature. The 
ability to reduce the adaptability of the device for different 
users, mitigate the impact of uncertainties such as fatigue 
on this study, and provide more consistent signals [5].

Fig. 1 The overall flowchart of the BTRN architecture proposed in the paper [5]
Anastasia-Atalanti et al. in Personalised Brain-Comput-
er Interface Modelsfor Motor Rehabilitation propose to 
integrate two separate lines of research on new therapies 
for stroke rehabilitation, brain-computer interface (BCI) 
training and transcranial electrical stimulation (TES). for 
stroke rehabilitation. Analysis of power changes across 
EEG frequency bands reveals individual neural mech-
anisms of motor recovery, guiding the optimization of 
transcranial electrical stimulation parameters. A migration 
framework can be used to learn a personalised decoding 
model from a small amount of individual data, which 

can better capture individual differences and predict the 
patient’s motor performance, providing a basis for the 
subsequent rehabilitation treatment. Based on this study, 
by combining the brain-computer interface technology 
with other new rehabilitation therapies such as transcrani-
al electrical stimulation, the brain plasticity can be better 
stimulated to further enhance the amplification of the mo-
tor imagery function of the user’s brain for the stability of 
the robot’s work and the ability to maintain the imagery 
state in a more sustainable way [6].
Currently, traditional brain-computer interface systems 
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are cognitively burdensome and less adaptive to the user. 
To address these limitations, Matthew Bryan and other 
scholars, in their study “An Adaptive Brain-Computer 
Interface for Humanoid Robot Control”, proposed the 
development of an adaptive hierarchical brain-computer 
interface (HBCI) system to control a humanoid robot 
(PR2). Fig. 2 shows the user selecting a command from a 
menu by following one of the 5 LED lights, while video 
feedback from the PR2 robot’s head camera is displayed 
on the screen. Fig. 2 shows a semi-humanoid PR2 robot in 
a remote location, which is used in this paper to perform 
proximity manipulation tasks, but maintains a fixed posi-
tion.
In summary, this diagram shows the BCI control interface 
and the settings of the PR2 robot used in the experiment. 
The HBCI system demonstrates enhanced adaptability and 
can be customized to suit individual user needs and envi-

ronments, thereby improving the flexibility of human-ro-
bot interaction. For instance, the system allows users to 
teach the HBCI new skills on the fly. This feature enables 
users to define complex multi-step tasks by sequencing 
lower-level skills and motor primitives, such as combin-
ing “pick up object”, “move arm”, and “place object” to 
create a “transfer object” task. The researchers employed 
five flashing LEDs as visual stimuli to recognize user 
input commands by measuring the corresponding frequen-
cy components in the brain’s electrical signals. Unlike 
traditional input methods that require complex physical 
movements or intense concentration, this SSVEP-based 
BCI control interface can detect the user’s input intention 
directly from electroencephalographic signals. By simply 
focusing on a flashing LED, users can input commands, 
significantly reducing the cognitive burden compared to 
more complex input devices or mental tasks [7].

Fig. 2 SSVEP Control Interface [7]
While discussing EEG signal processing, it’s worth noting 
that related research in facial expression recognition also 
employs advanced algorithms. For instance, both Zhuang 
and Qiao Min used Convolutional Neural Networks 
(CNNs) for extracting features from facial images. Jiayu 
Zhuang’s team further incorporated Long Short-Term 
Memory Networks (LSTM) to improve emotion recog-
nition accuracy. These techniques could potentially be 
adapted for EEG signal processing to enhance brain-com-
puter interfaces.
Jiayu Zhuang et al. and Qiao Min et al. used different con-
trol objects in their experiments. Zhuang’s team employed 
a 1/5-scale electric model car, modified into a four-wheel 
independent drive electric vehicle (FWIA) for better 
real-world testing due to its excellent performance and 
flexibility. In contrast, Qiao Min and colleagues utilized 

SLAM robots for their research. Zhuang’s system incor-
porates environmental sensors like laser radar (LIDAR) 
and uses a shared control strategy, combining BCI output 
signals with environmental data to generate real-time con-
trol commands. This approach helps avoid collisions and 
enables autonomous navigation. In contrast to Zhuang’s 
integrated approach, Qiao Min’s system exclusively utiliz-
es EEG signals transmitted via TCP/IP protocol, employ-
ing a deep learning framework for signal interpretation 
and task execution based on a trained model.
In Zhuang’s system, a shared control strategy is intro-
duced to generate control commands for the vehicle in 
real time based on BCI output signals combined with en-
vironment sensing data. This strategy helps to avoid colli-
sions and enables the model vehicle to ensure safety while 
navigating autonomously. Flow diagram of the overall 
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scheme of the BCI system for ground vehicles Control. 
The red line represents the training data path, and the 
blue line represents the test Data path, as shown in Fig. 3. 
Overall, the hardware design of the vehicle control focus-

es on the effective integration with the EEG signals and 
the optimisation of the environment sensing capability to 
ensure efficient and intelligent vehicle control through the 
brain-computer interface [2].

Fig. 3 Overall programme of the system [3]

3. Conclusion
Current technology has successfully integrated motor 
imagery-based brain-computer interfaces with intelligent 
navigation robots, effectively converting EEG signals into 
robot control commands. For instance, recent studies have 
shown navigation accuracy improvements of up to 30% 
and response times reduced by 50% compared to earlier 
systems. These advancements enable the completion of 
complex navigation tasks in real-world scenarios, such 
as navigating through crowded indoor spaces or adapting 
to changing outdoor environments. The system is also 
becoming mature enough to show good navigation accu-
racy and response speed, and is able to complete complex 
navigation tasks in real-world scenarios. This paper opens 
a new way of robot navigation through EEG signals by 
using motion imagery brain-computer interface technol-
ogy. The optimised brain-control interface in terms of us-
er-friendliness enables users to control the robot in a natu-

ral and intuitive way, improving the operating experience. 
In terms of real-time feedback, the real-time problem 
of the system is mitigated so that the robot can respond 
quickly to EEG signals, ensuring smooth operation.
Future road navigation scenarios will face dynamic cog-
nitive interference, necessitating improvements in auton-
omous driving’s road condition understanding. To address 
this, researchers could focus on developing more sophis-
ticated shared control strategies. For example, they might 
integrate advanced machine learning algorithms to predict 
and mitigate potential interferences, or implement adap-
tive control systems that can quickly adjust to changing 
road conditions. Additionally, enhancing the BCI system’s 
real-time processing capabilities through improved hard-
ware and optimized signal processing algorithms could 
significantly boost its reliability in complex environments. 
From the improvement of environment perception, this 
will establish a good foundation for the future improve-
ment of autonomous driving technology. This research has 
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a good prospect in the future, both in the high-risk work-
ing environment instead of manual labour and in the field 
of medical rehabilitation. Overall, domestic research in 
this field continues to advance and is expected to achieve 
wider applications and technological breakthroughs in the 
coming years.
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