
ISSN 2959-6157

Dean&Francis

840

Abstract:
This article delves into key concepts in algebraic topology, 
specifically focusing on homotopy, contractible spaces, 
fundamental groups, and simply connected spaces. 
Definitions, examples, and key propositions of these 
concepts are explored, providing insights into their 
mathematical foundations and applications. Homotopy, 
describing the continuous deformation between two 
objects, plays a crucial role in defining homotopy groups, 
which serve as important invariants in algebraic topology. 
The fundamental group, as the first homotopy group, is 
instrumental in analyzing the basic shape of a topological 
space, capturing information about its structure, such as the 
presence of holes. The paper also examines contractible 
spaces, which can be continuously reduced to a single 
point, and simply connected spaces, characterized by 
their trivial fundamental groups. Additionally, the article 
addresses advanced topics in homotopy theory, including 
fibrations, exact sequences, and higher homotopy groups, 
highlighting their importance in linking topological spaces 
and revealing complex homotopy relationships. The study 
emphasizes the relevance of homotopy theory in both 
mathematics and broader fields, such as physics, where 
it aids in visualizing the universe’s structure through 
analogies with fiber bundles.

Keywords: Algebraic Topology; Homotopy; Fundamen-
tal Groups; Simply Connected Spaces; Fibration.

1. Introduction
Algebraic topology is a fundamental branch of math-
ematics that studies topological spaces through alge-
braic methods. Among the core concepts of this field 
are homotopy and fundamental groups, which pro-

vide essential tools for understanding the structural 
properties of spaces, such as whether two spaces are 
homeomorphic [1]. Homotopy, which captures the 
idea of continuous deformation between objects, and 
fundamental groups, which reflect the basic shape 
and connectivity of spaces, are pivotal in analyz-
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ing topological questions. By examining these concepts, 
mathematicians can gain insights into the intrinsic proper-
ties of spaces that are not immediately apparent from their 
geometric descriptions.
Recent advancements in algebraic topology have seen 
an increased focus on homotopy and its applications to 
various mathematical and scientific problems. Homotopy 
theory has been used extensively in areas like group the-
ory, complex analysis, and higher-dimensional topology, 
helping to build bridges between different mathematical 
disciplines [2]. The study of fundamental groups, as the 
first homotopy group, has also been crucial for identifying 
the characteristics of topological spaces, particularly in 
distinguishing between simply connected and multiply 
connected spaces [3]. Additionally, contractible spaces 
and simply connected spaces play vital roles in these 
analyses, offering simpler yet powerful models for under-
standing more complex structures.
This article explores the definitions, examples, and key 
propositions related to homotopy, contractible spaces, fun-
damental groups, and simply connected spaces. It pro-
vides a comprehensive overview of these concepts, in-
cluding detailed explanations and practical examples to 
illustrate their significance in algebraic topology. Further-
more, the paper delves into advanced topics such as fibra-
tions, exact sequences, and higher homotopy groups, 
highlighting their importance in linking topological spaces 
and revealing intricate homotopy relationships. By pre-
senting these key ideas and demonstrating their applica-
tions, the study aims to provide a foundational under-
standing of these critical aspects of algebraic topology, 
with implications extending to broader fields, including 
physics and other sciences.The word topological space ac-
tually refers to a space and a topology of it, which implies 
the condition that a topology exists on this space. The for-
mal definition of a topology can be given using open sets 
[2]. Consider a space X , and a collection of subsets F  of 
X  that satisfies the following conditions:
X  itself and ∅  are open;
The intersection of a finite number of open sets is open;
The union of any number of open sets is open.
Then F  is called the topology of space X , and ( , )X F  is 
called a topological space.
A group is an algebraic structure that satisfied the group 
axioms, consisting of a set and a binary operation. A group 
is a set G G( )≠ ∅  along with a binary operation [3]. The 
binary operation that denoted by “ ⋅ ” combines any two 
elements a  and b  to form an element in G , written as 
a b⋅ . The group axioms include 3 properties: associativi-
ty, identity element, and inverse element. Those properties 

will be explained in the following discussion of the validi-
ty of the fundamental group’s definition, but they are only 
mentioned briefly here [4].
In calculus, a continuous function is defined by uses of ?  
– δ  language. That is, a function f  is called continuous at 

point x0 ∈
n , if ∀ >? 0 , ∃ >δ 0  such that ∀ ∈x 

n , if 

x x− <0 δ , then f x f x( ) − <( ) || ?0 . Since an open 
ball describe the set of all points that have distance from 
the centre less than r , a continuous function can be de-
fined using open balls [5]. Consider a function f  describes 
a continuous mapping from n  to m , ∀  open set 

U ∈m , ∀ ∈x f U0
−1 ( ) , f x U( 0 )∈ , ∃ >? 0  such that 

B f x U( ( ;?)0 ) ⊂ ; ∃ >δ 0  such that 

f B x B f x( ( 0 0; ( ;?)δ )) ⊂ ( ) . So 

B x f B f x f U( 0 0; ( ( ;?)) ( )δ ) ⊂ ⊂− −1 1( ) ,  m e a n i n g  t h a t 

f U−1 ( )  is an open set in n . Therefore, it can be con-

cluded that f  is a continuous function if the preimage of 
all open sets under the function is open [6].
With the fundamental concepts above, explaining the 
definitions of homotopy and fundamental groups will be 
easier.

2. Homotopy

2.1 Definition 1: Introduction and Formal Defi-
nition of Homotopy
The definition of homotopy captures the concept of two 
paths being the same in a topological sense. If two paths 
can be smoothly deformed into one another, they are said 
to be homotopic [7]. The following is the definition of ho-
motopy:
Let c d X, : 0,1[ ]→  be two paths of a topological space X  
from x  to y . We say that c  and d  are homotopic if there 
exists a continuous function F X: 0,1 [0,1][ ]× →  such that 

c t F t( ) = ( ,0)  and d t F t( ) = ( ,1)  for all t∈[0,1] . The 
function F  is called an homotopy.
In this definition, two paths c d,  are connected through a 
continuous function F , which makes them can be contin-
uously transformed into one another. This is called homo-
topy, denoted as c d .

2.2 Example 1: Practical Example Illustrating 
the Concept of Homotopy
For the definition of homotopy above, this paper gives 
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several examples to explain.
For the first example, as Fig. 1 shows, consider the two 
paths as two dashed lines on a plane with the same end-
points. If the two dashed lines are homotopic relative to 
their endpoints, then all curves with the same endpoints as 
the existing ones inside the closed shape formed by these 
two curves represent all possible homotopies [8]. It is im-
portant to note that the curves mentioned here do not in-
tersect themselves [9]. If we take the second parameter of 
the homotopy F , whose value range is [0,1] , as time, it 
can be seen as an animation describing the continuous de-
formation between the two curves.

Fig. 1 A possible homotopy between two 
dashed lines (Photo credit: Original).

The second example is about a linear homotopy on a 2-di-
mentional Euclidean space 2 . Consider two topological 
spaces X = [0,1]  and Y R= ,  let  the f irst  path be 

f x x( ) = 2 , the second path be g x( ) = 0 , then the homo-
t o p y  F  b e t w e e n  t h e m  c a n  b e  d e f i n e d  a s 
F x t t f x t g x t x( , 1 1 2) = − + ⋅ = − ⋅( ) ( ) ( ) ( ) .  Obv ious ly, 

w h e n  t = 0 ,  F x x f x( ,0 2) = = ( ) ,  w h i l e 

F x g x( ,1 0) = = ( )  when t =1  [10]. This shows that func-

tion f  can be continuously transformed into the function 
g  via the homotopy F .

3. Contractible Spaces

3.1 Definition 2: Definition and Characteristics 
of Contractible Spaces
The definition of contractible spaces can be given by us-
ing homotopy. A contractible space is also an important 
concept in topology because it describes a space that can 
be continuously shrunk to a single point. This implies 
that a contractible space must have a trivial topology, as a 
topological space with a trivial topology is one where the 
only open sets are the empty set and the entire space. The 
following is the definition of contractible spaces:
Consider a homotopy between two continuous functions 
f g X Y, : →  from a topological space X  to another one 

Y . In the case, X Y= , f id= x  and g  is constant, we say 
that X  is contractible.
In the definition above, idx  refers to the identity map, 
which is a mapping of X  to itself. The meaning of the 
definition is that if there exists a homotopy showing that 
the identity map of a topological space X  is null-homo-
topic, which means be homotopic to a constant map, this 
implies that the topological space X  can be continuously 
shrunk to a point, meaning X  is a contractible space.

3.2 Example 2: Illustration of a Contractible 
Space Through an Example
A positive and a negative example can be used to explain 
the definition above.
First, consider the example of a star-shaped subspace in 
an  -vector space X . For X , consider if there exists a 
star-shaped subspace at x  as Sx , ∀ ∈y S , (1− + ∈t x ty S)
, ∀ ∈t [0,1] . The identity map id S SS xx

: →  is homotopic 
to the constant map that sends every point in S  to the 
p o i n t  x .  T h e  h o m o t o p y  c a n  b e  d e f i n e d  a s 
F S S:[0,1]× →x x , (t y t y tx, 1) ( − +) . Since Sx  can be 
continuously shrunk to a point within itself, it is therefore 
contractible.
Next is a counterexample involving an annular space E . 
As shown in Fig. 2, E  can be regarded as a 1-dimensional 
topological space that is homeomorphic to the circle S1 . 
Assume E  is contractible. According to the definition of 
c o n t r a c t i b i l i t y,  t h e r e  m u s t  e x i s t  a  h o m o t o p y 
H E E: [0,1]× →  such that:

 ∀ ∈ =x E H x x, ,0( )  (the identity map) (1)

 ∀ ∈ =x E H x x, ,1( ) 0  (2)

Where x0  is a fixed point in E . To contract E  to the point 

x0 , points on opposite sides of the boundary of E  must 

approach each other and eventually coincide at x0 . How-
ever, it is impossible to perform such a continuous defor-
mation within E  because E  has no interior region. There-
fore, these points cannot cross the space’s interior while 
maintaining the continuity required by the homotopy, vio-
lating the requirement that the homotopy remains continu-
ous throughout the process. Thus the assumed homotopy 
H  is not continuous, meaning E  is not contractible.
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Fig. 2 Space E  and F  (Photo credit: 
Original).

4. Fundamental groups

4.1 Definition 3: Detailed Explanation of Fun-
damental groups
Another application of homotopy is in homotopy groups, 
with the fundamental group being the first and simplest 
homotopy group. By analyzing the fundamental group 
of a topological space, its basic shape can be understood. 
Therefore, the fundamental group is an important concept 
for determining whether two spaces are homeomorphic. 
Its definition is as follow:
Let X  be a topological space and x X0 ∈ . The set of 

equivalent classes of closed paths from x0  to x0  under 

homotopy equivalence is denoted by π1 0( , )x X . This set 
has a group structure and is called the fundamental group 
at the base point x0 .
There is also a key proposition that related to the defini-
tion, which is:
π1 0( , )x X  only depends up to isomorphism of the 

path-connected component of x0 .
The proof of this proposition will be explained in Section 
4.3.

4.2 Example 3: Example Demonstrating the 
Application of the Fundamental
For the definition of the fundamental group, an intuitive 
explanation is provided using the example of a 2-dimen-
sional torus. As shown in Fig. 3, consider a fixed point p  
on the 2-dimensional torus T 2 . After fixing the point, a 
closed curve γ1  can be constructed starting and ending at 
this point. The homotopy class of this curve, denoted 
π ( , )p T 2 , represents the fundamental group of the torus 

based at the point p . The homotopy class of γ1  includes 

all curves homotopically equivalent to it. Imagine γ1  as 
being freely deformable and infinitely extendable without 
breaking; then the new curve obtained by deforming γ1  is 

one that is homotopically equivalent to γ1 . As a counter-

example, γ1  and γ 2  are not homotopically equivalent in 

the figure. γ1  loops around the hole in the middle of the 

torus, while γ 2  loops around the hollow part of the ring, 
since T 2  is formed by rotating a hollow circle.

Fig. 3 Loops on the 2-dimentional torus 
(Photo credit: Original).

4.3 Proof of the Proposition

Let Ω( , )X x0  be the set of all loops in X  based at x0 . 

r X x∈Ω( , )0  is a continuous map r X:[0,1]→  such that 

r r x(0 1) = =( ) 0 .  Define a  binary operat ion *  on 

π1 0( , )x X  such that the concatenation of two loops r1  and 

r2  in Ω( , )X x0 , r r1 2* , is the loop defined by:

 r r t1 2* ( ) =






r t if t2

r t if t

(2 1), 1.

1 (2 , 0 ,

− ≤ ≤

) ≤ ≤

1
2

1
2  (3)

For any path p  from x0  to x1 , there exists the map 

[r p r p]   * * −1  such that p  can induce an isomor-

phism between the  fundamental  groups ,  where 
p t p t−1 ( ) = −(1 )  is the path from x1  back to x0  ( [r]  
means the homotopy class of r ). Thus, the fundamental 
group π1 0( , )x X  is isomorphic to π1 1( , )x X  for any other 
base point in X .

4.4 Verification of Group Axioms

To prove that π1 0( , )x X  forms a group under operation * , 
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it is needed to check group axioms, which are associativi-
ty, identity element and inverse element.
First, the operation *  is associative up to homotopy. That 
is, for any three loops r r r1 2 3, , , the loops (r r r1 2 3* *)  and 

r r r1 2 3* *( )  are homotopic. Hence, the induced operation 

on π1 0( , )x X  is associative.

The constant loop e t x( ) = 0  for all t∈[0,1]  serves as the 
identity element. For any loop r , the concatenation e r*  
and r e*  are both homotopic to r . Hence, the homotopy 
class of e  is the identity element in π1 0( , )x X .
For each loop r ,  define its inverse loop r−1  by 

r t r t−1 ( ) = −(1 ) . The concatenation r r* −1  is homotopic 

to the constant loop e . Hence, [r r]−1 =   
−1  serves as the 

inverse of [r]  in π1 0( , )x X .

5. 5 Simply Connected Spaces

5.1 Definition 4: Definition and Properties of 
Simply Connected Spaces
The concept of simple connectivity is very important in 
complex analysis, and it is a property of topological spac-
es in topology. Using the concepts of fundamental groups 
and trivial groups, the definition of a simply connected 
space can be given as follows:
If X  is path connected and its fundamental group is trivi-
al, we say that X  is simply connected.
A trivial group refers to a group that contains only a single 
element e , with the group operation being e e e+ = .

5.2 Example 4: Example to Elucidate the Con-
cept of Simply Connected Spaces
For a simply connected space, a counterexample is used to 
illustrate its properties. As shown in Fig. 4, there is a set 
with a yellow closed curve inside. Since this closed curve 
encloses two holes in the set, in cannot be contracted to a 
single point, meaning it is not homotopically equivalent to 
a point. So, the set is not a simply connected space.

Fig. 4 A set with a yellow closed curve inside 
(Photo credit: Original).

Additionally, an obvious example is the 2-dimensional 
Euclidean space 2 . 2  is path-connected, and all loops 
in 2  can be contracted to a single point, meaning its fun-
damental group is trivial. Therefore, 2  is a simply con-
nected space.

5.3 Key Proposition of Simple Connection
There’s a crucial proposition that related to simple con-
nection, which connect it with properties of contractible:
If space X  is contractible, then it is simply connected.
Here’s the proof of the proposition:
First, according to the definition of simple connection, it 
is needed to prove that X  is path-connected. Since X  is 
contractible, for any x x X1 2, ∈ , the homotopy H  provides 

a path to move from x1  to the constant point c  and then 

from c  to x2 . Thus, any two points in X  can be connect-
ed by a path.
Next, if the fundamental group of X  is trivial, X  is sim-
ply connected is obvious. Let r X[0,1]→  be any loop in 

X  based at a point x X0 ∈ . Let F  be the homotopy such 

that F x x( ,0) = , and F x c( ,1) =  for all x X∈ . Consider 

t h e  h o m o t o p y  H X: 0,1 [0,1][ ]× →  d e f i n e d  b y : 

H s t F r s t( , ( , )) = ( ) . Inside, H s r s( ,0) = ( ) , which is the 

original loop; H s c( ,1) = , which is the constant map to 

the point c . For s = 0  and s =1 , H t H t c(0, 1,) = =( ) , 
which is fixed at the point c . Hence, r  is homotopic to 
the constant loop, meaning that in the fundamental group 
π1 (X ) , the loop r  represents the identity element. Since 
any loop in X  can be homotopically contracted to a point, 
the fundamental group π1 (X )  is trivial.

5
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6. Advanced Topics in Homotopy The-
ory
In the study of homotopy theory, many advanced topics 
revolve around fibration, exact sequences, and higher ho-
motopy groups.

7. Fibration and Its Properties

7.1 The Definition of Right Lifting Property, Fi-
bration, and Pullback Fibration
Fibration is a key concept that not only involves the struc-
ture of topological spaces but also provides essential tools 
for understanding complex homotopy relationships. A fi-
bration connects different topological spaces through a 
special type of continuous map and serves as a bridge in 
homotopy theory. This type of mapping satisfies the right 
lifting property for any space X . It is defined by a contin-
uous map f X Y: → . F  has the right lifting property with 
respect to continuous map A B→ , if for any commutative 
diagram of continuous maps:
 A X→

 ↓↓ f  (4)
 B Y→
There exists a continuous map B X→  such that the dia-
gram:
 A X→

 ↓↓ f  (5)
 B Y→
 A X→

 ↓  ↗↓ f  (6)
 B Y→
is commutative. Thus, a fibration is a continuous map that 
satisfies the right lifting property with respect to the inclu-
sion A A a a→ ×[0,1 , ,0]  ( )  for any topological space 
A .
The properties of fibration are crucial for constructing 
and analyzing the homotopy types of topological spaces. 
When studying fibrations, particular attention is paid to 
the pullback property of fibrations, the homotopy type of 
fibers, and the applications of fibrations in homology and 
homotopy groups. Through these properties, new topolog-
ical spaces that are homotopy equivalent to the original 
space can be constructed, leading to a deeper understand-
ing of the homotopy relationships between sapces.
For instance, consider the pullback property of a fibration. 
Given a fibration and a map, p E B f A B: , :→ → , the 

map  p f E Af : * ( ) →  i s  a  f i b r a t i on ,  and  f E* ( ) =  

{ , | }(a e A E f a p e)∈ × =( ) ( ) is the pullback, and the 

projections of f E* ( )  onto A  and E  yield the following 
commutative diagram:
 f E E*( ) →
 Pf P↓↓  (7)

 A B→
f

Then, the fibration p f  is called the pullback fibration.

7.2 Examples of Pullback Fibration
A related intuitive example can be given. Imagine A  as a 
line, with a circle (fiber) at each point on A .This means 
the total space E  looks like a series of circles stacked on 
A .
Now, imagine a more complex shape B , e.g., a zigzag 
curve, and the map f  projects points on B  onto the line 
A . When the fibration is pulled back from A  to B , the 
same circles (fibers) corresponding to the points on A  are 
effectively attached to B , and the difference is that these 
circles now cover the more complex shape of B .
As a result, the pullback fibration creates a new structure 
that combines the original fibers with the geometry of B , 
while preserving the relationship determined by f .

8. Exact Sequences and Higher Homo-
topy groups

8.1 The Definition of Exact Sequences
In the context of fibration, the exact sequence provides 
a powerful tool for analyzing the complex structure of 
homotopy groups. The long exact sequence of a fibration 
connects higher-order homotopy groups to lower-order 
ones. These sequences not only help researchers under-
stand the homotopy groups of individual spaces but also 
reveal the homotopy relationships between different spac-
es.
The definition of exact sequences comes from group theo-
ry. A sequence

 G G G G0 1 2→ → → →
f f1 2 f f3



n

n  (8)

of groups and group homomorphisms will be exact at Gm , 

if im f ker f( m m) = ( +1 ) . Ther sequence will be an exact se-

quence if the sequence is exact for all Gm , which 

m n∈[1, )  and is an integer.

6
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8.2 Theorem Related to Exact Sequences
After introducing the definition of exact sequences, here is 
a crucial theorem related to exact sequences:
Let f E B: →  be a fibration, e E0 ∈ , b f e0 0? ( ) , F  is the 

fiber above b0 , then there exists a long exact sequence:



π π0 0 0 0( , ) ( , )
→ → → → →
e E e B
π π π π1 0 1 0 1 0 0 0( , ) ( , ) ( , ) ( , )e F e E e B e F

→

δ

 (9)

Note that the exactness at π 0  holds for those points whose 
image is connected to the base point, this concept is anal-
ogous to the concept of kernel in the group.

8.3 Higher Homotopy groups
Higher homotopy groups are an important subject of study 
in homotopy theory, capturing deeper topological infor-
mation about a space. The computation of higher homoto-
py groups often relies on tools like fibrations and exact se-
quences. These tools allow researchers to progressively 
decompose and analyze the homotopy type of a space and 
use known homotopy group information to deduce high-
er-order homotopy groups. For the n -th homotopy group 
π n (X ) , it describes the homotopy classes of maps from 

the n -dimensional sphere S n  to the space X . For exam-

ple, the second homotopy group π 2 (X )  is related to 
2-dinemsional “holes” in the space, as Fig. 5 shown.

Fig. 5 The three types of holes in 0, 1, and 
2-dimensions (Photo credit: Original).

9. Conclusion
This paper provides a comprehensive overview of key 
concepts in algebraic topology, focusing on homotopy, 
contractible spaces, fundamental groups, and simply 
connected spaces. By defining these fundamental ideas 
and illustrating them with practical examples, the study 

highlights the critical role of homotopy in understanding 
the intrinsic properties of topological spaces. The explo-
ration extends to advanced topics such as fibrations, exact 
sequences, and higher homotopy groups, emphasizing 
their significance in linking topological spaces and unrav-
eling complex homotopy relationships. These insights not 
only deepen the understanding of algebraic topology but 
also demonstrate its broad applications in various fields, 
including physics, where analogous structures aid in vi-
sualizing complex phenomena like the shape of the uni-
verse. Future research in this area could focus on further 
exploring the connections between homotopy theory and 
other mathematical disciplines, such as category theory 
and differential geometry, to uncover deeper structural in-
sights. Additionally, there is significant potential in apply-
ing advanced homotopy concepts, like higher homotopy 
groups and fibrations, to emerging fields such as data sci-
ence, machine learning, and quantum computing, where 
topological methods can provide novel ways to analyze 
data structures and solve complex problems. Expanding 
the theoretical framework of homotopy to include these 
modern applications could bridge gaps between abstract 
mathematical theory and practical, real-world challenges, 
paving the way for new innovations across diverse scien-
tific domains.
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