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Abstract:
Markov Chain Monte Carlo (MCMC) methods represent 
a significant advancement in computational statistics, 
offering powerful tools for solving complex problems 
involving high-dimensional probability distributions. This 
paper provides a comprehensive overview of the theoretical 
foundations and practical applications of MCMC 
methods. This paper begins by discussing the fundamental 
principles of Markov chains and Monte Carlo simulations, 
highlighting how their combination facilitates the 
estimation and how it use for solving of complex integrals 
and optimization problems. The paper further explores 
various applications of MCMC in fields such as finance, 
computer science, and biology, including risk management, 
Bayesian inference, and genetic data analysis. Despite their 
extensive use, MCMC methods face challenges related 
to convergence and computational efficiency, which are 
addressed through ongoing advancements in algorithmic 
techniques and computational resources. This overview 
aims to elucidate the core principles and practical relevance 
of MCMC methods, offering insights into their applications 
and encouraging future research in this dynamic area.

Keywords: Markov Chain Monte Carlo, Bayesian Infer-
ence, Computational Statistics, Genetic Data Analysis.

1. Introduction
In this paper, the author wants to introduce about 
MCMC method and its application. Basic on this pur-
pose the author will firstly talk about the background 
of Markov chain and Monte Carlo Methods which 
include three ideas: state machine, random process 
and Markov Chain. Then the author will introduce 
about Monte Carlo method. The author aspiration 
is to introduce Markov Chain Monte Carlo method 
(MCMC method) as clear as possible to people who 
might have no foundation of MCMC method. After 

the author talk about previous idea, the author will 
introduce three specific applications in different 
ground in order to makes reader to have a relatively 
comprehensive idea about what MCMC method can 
do and why they make sense to almost every ground. 
With the development of Markov Chain Monte Carlo 
(MCMC) algorithms, statistical computing and data 
analysis have transformed providing powerful tools 
to tackle complex problems in different disciplines. 
MCMC methods can be thought of as an extension 
to the Monte Carlo simulations, refined by incorpo-
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rating properties associated with Markov chains. Markov 
chains are sequences of random variables where the future 
state depends only on now in real time, not on all events 
that came before. Monte Carlo methods use random sam-
pling to solve problems that are not deterministic and of-
ten analytically intractable [1].
Naively, one may think these are two disjoint ideas: 
Markov chain methods and Monte Carlo techniques (al-
gorithms), but in fact combining them for sampling from 
high-dimensional probability distributions is a beautiful 
engine. MCMC methods work great for computing inte-
grals over complex spaces of probabilities and resolving 
problems based on optimization. Therefore, the ability to 
deal with high dimension spaces and estimate integrals 
makes MCMC an important tool for many applications 
in physics, finance, computation science or biology. In 
finance, MCMC methods are used to model risk and man-
age it, which is invaluable for applications like evaluating 
portfolios or pricing financial derivatives. MCMC flexibil-
ity enables the modeling of complex financial instruments 
and understanding uncertainties in market dynamics. This 
technique is important in computer science as MCMC 
has had a major impact on the development of machine 
learning, especially for Bayesian inference and to create 
probabilistic models. These strategies help to improve the 
posterior inference and algorithms update in deep learning 
settings.
Again, MCMC methods are incredibly common in bio-
logical and chemical research to model the pathological 
processes of more complex systems. Such closures can be 
found in both stochastic simulations, and inference meth-
ods like MCMC employed for instance to analyze genetic 
data or reconstruct evolutionary histories. They have been 
used for an easier prediction of chemical behaviors and 
molecular trans pages in chemistry. Although versatile, 
MCMC methods have difficulties with convergence and 
computational burden. Check that Markov at has mixed to 
the target distribution and computational burden for simu-
lations. New methods and improved computational power 
seem to be incrementally solving these issues, opening 
new grounds for MCMC practices. This paper attempts to 
give an introductory account of the theory and practice of 
MCMC. This paper aims to spark further research in this 
fast-evolving field by probing the theoretical foundations 
and applications of these developments.

2. Method and Theory

2.1 Background of Markov Chain and Monte 
Carlo Methods
Before delving into the concept of Markov chains, it is es-

sential to introduce several foundational ideas to facilitate 
a comprehensive understanding.
The first concept is the state machine. A state machine is 
a mathematical framework that describes a limited set of 
states and the transitions or actions that occur between 
these states. In the context of a Markov chain, a state ma-
chine is employed to model the state of each variable.
The second concept is a random process. A random pro-
cess is essentially a collection of random variables, often 
indexed by time. For example, let N t( )  denote the num-
ber of customers who have entered a bank from t=9 (when 
the bank opens at 9:00 am) until time t, on a particular 
day, where t is in the range [9,16].  In this case, time t is 
measured in hours, but it can take any real value between 
9 and 16. The author assumes that N (9 0) = ,  and 

N t( )∈ …{0,1,2, }  for all t∈[9,16].  Notice that for any 

given time t₁, the random variable N t( ?)  is discrete. Thus, 

N t( )  is a discrete-valued random process. However, be-
cause t can take any continuous value between 9 and 16, 
N t( )  is classified as a continuous-time random process.
Following the introduction of the state machine and ran-
dom process, this paper can now delve into the concept 
of the Markov chain [2]. A Markov chain is a mathemat-
ical model that characterizes a random process where the 
current state depends solely on the immediately preced-
ing state, with no consideration of states prior to that. In 
simpler terms, a Markov chain is a random process that 
focuses exclusively on the present state, disregarding past 
states.
For example, imagine someone playing an adventure 
game that consists of various levels, each with different 
levels of difficulty and rewards. The player must make 
decisions at each level to maximize their total rewards. At 
any given level, they must evaluate the current state (such 
as the character’s health, equipment, and position) and 
how their choices will influence future states and rewards 
(e.g., deciding whether to attack or retreat, or which item 
to select). By utilizing the Markov decision process, one 
can compute the expected return of each decision and de-
termine the best course of action to maximize overall re-
wards. This approach aids individuals in making optimal 
decisions in uncertain scenarios.The Markov process can 
be described by a simple formula:

 P X j X i X i P X j X i( (t t+ +1 1) = = … = = = =| , , |t t0 0 ) ( ( ) )  (1)

Where Xt  denotes the state at time t  , and  i  and j  repre-
sent two distinct states within the state space. The expres-
sion P X j X i( | )t t+1 = =  refers to the probability of transi-
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tioning from state  i  to state j . Another key concept in the 
context of Markov processes is the Stationary Markov 
Process. Let P represent the state transition matrix of the 
Markov chain, and let π denote the steady-state probabili-
ty distribution. Based on the stationary state equation, one 
can derive the following equation: π π= P . This indicates 
that the steady-state probability distribution is an eigen-
vector associated with an eigenvalue of 1. To find the 
steady-state probability distribution, one must solve for 
the eigenvector corresponding to this eigenvalue.
Markov chains can be fully represented by their initial 
states and probabilistic transition matrices. Let the vector 
π ( j )  represent the probability that a random variable in 

the sequence takes exactly the J th  state, P  represents the 

state transition matrix, and Pij  represents the probability 

of moving from the i to the J th state. First conclude about 
stationary Markov process is:

 lim P j
n→∞ ij

n = π ( )  (2)

Assuming the state space consists of  K states (where K 
can be either finite or infinite), after  n  multiplications, the 
value of each element in the square matrix depends solely 
on the column number. Furthermore, all elements within 
the same column will share the same value..

 lim P
n→∞

n =
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Or called:

 π π( j i P) =∑
i=

K

0
( ) ij  (4)

Therefore, easily can find when n →∞ , π(j) went to a 
constant. Based on the previous explanation, the author 
identifies three key properties. Markov Property: The fu-
ture state of the system depends solely on the current 
state, with no influence from any prior states. Time Ho-
mogeneity: The transition probabilities remain consistent 
over time, meaning the transition matrix does not change 
between different time points. Strong Markov Property: 
The distribution of the system’s future states is completely 
determined by its present state, regardless of the duration 
spent in that state [3].
The next topic is Monte Carlo Methods. Monte Carlo 
methods are computational techniques that estimate val-
ues through a large number of random samples to analyze 
a system. They are highly versatile and effective, yet rela-
tively simple to implement. For many complex problems, 
Monte Carlo methods are often the most straightforward 

approach and, in some cases, the only practical solution.
For instance, consider a square with a circle inscribed 
within it, where the circle is tangent to the square. The ra-
tio of their areas is π / 4 . By randomly generating 10,000 
points (i.e., coordinate pairs ( , )x y ) inside the square and 
calculating their distance from the center, one can deter-
mine whether each point lies inside the circle. Assuming 
the points are evenly distributed, the proportion of points 
inside the circle should approximate π / 4 , and multiply-
ing this ratio by 4 provides an estimate of π . This exam-
ple encapsulates the essence of the Monte Carlo method.
The next concept to discuss is Markov Chain Monte Carlo 
(MCMC) Integration [4]. The Bayesian inference tells that 
the observed variables and parameters in the model are all 
random variables. So, sample x x x= …( 1, n ) and parameter 
θ  The joint distribution can be expressed as:
 f x f x xx x n, | 1θ θ( , ,θ π θ) = …( ) ( )  (5)

And based on Bayes axiom, the expectation of g (θ )  can 
be express as:

E g x g f x d[ (θ θ θ θ| |)] = =∫ ( ) θ |x ( ) ∫ g f x d

∫
(θ π θ θ

f x dθ

)

|x (
θ |x

)
(
π θ θ

)
( )

( )

 (6)

The integration E g x g f x x d[ ( | )] | ( | )θ θ θ θ θ= ∫ ( )   has its 

Monte Carlo estimation sample mean:

 g g x
−

=
m
1 ∑

i

m

=1
( i )  (7)

where x x1, ,… m is the sample that sampling from f xθ |x ( | )θ

. When  x x1, ,… m  independent, based on the law of large 
numbers tells that as the sample size n approaches infinity, 

g
−

 converges to E g x[ ( | )]θ .

2.2 Markov Chain Monte Carlo Methods
In some problems, sampling from distribution func-
tion f xθ |x (θ | )  can be really hard, here is This is where the 
Markov Chain Monte Carlo (MCMC) algorithm comes 
into play. Another key aspect of the Monte Carlo Method 
(MCM) is the Metropolis-Hastings (MH) Algorithm, 
which encompasses four primary sampling techniques: 
Metropolis sampling, Gibbs sampling, independent sam-
pling, and random walk sampling. The core idea behind 
the MCMC method is to construct an appropriate Markov 
chain, with the algorithm primarily focused on utilizing a 
given Markov chain for sampling purposes. Markov 
chain { | 0,1,2 }X tt = …  were given a state that Xt  current-
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ly experienced, produce next state Xt+1 . MH algorithm [5] 
constructed by following steps.
1. constructed appropriate proposal distribution g X( )·| t

2. produce Y from g X(·| t )
3. if Y are accepted, X Yt+1 = . Else Xt+1 =  Xt

Another concept is that MH sampler. A MH sampling pro-
duce Markov chain by following step:
1. constructed appropriate proposal distribution g X( )·| t .

2. Produce X 0  from a distribution g.
3. Repeat until Markov chain reach it equilibrium state.
T h e  p r o b a b i l i t y  o f  a c c e p t a n c e  i s  α (X Yt , ) =

min(1, )
f X g Y X
f Y g X Y
(
(

t t

)
)

( | )
( | )

t . In metropolis algorisms, pro-

posal distribution is symmetric. So, its acceptance proba-

bility is α (X Y mint , (1, )) =
f X
f Y
(
(

t

)
)

.

3. Result and Application

3.1 Application of MCMC Method in Biology
In gene expression analysis, the MCMC method is of-
ten used to fit a mixed model to identify genes that are 
differentially expressed between different groups (e.g., 
healthy controls and disease case groups). Specifically, the 
MCMC algorithm performs the following steps:
1. Initialize parameters: Assign initial values to the pa-
rameters of the mixed model (e.g., mean variance and mix 
ratio)
2. Calculate a posteriori distribution: Use a Markov chain 
to extract samples from a Posteriori distribution The Pos-
teriori distribution is a joint distribution of model parame-
ters, given the observed data
3. Update parameters: Update model parameters based on 
the value of the current sample in the Markov chain
4. Repeat steps 2-3: Repeat steps 2-3 until the Markov 
chain reaches a stationary state, where the parameter esti-
mates no longer change significantly with the number of 
iterations.
Once the MCMC algorithm converges, the model parame-
ters can be used to identify differentially expressed genes. 
Specifically, the researchers can calculate the posterior 
probability of each gene, representing the likelihood that 
it is differentially expressed between different groups The 
MCMC method, which has a high posterior probability 
that genes are considered differentially expressed, has sev-
eral advantages in gene expression analysis: it can handle 
complex experimental designs, such as data with multiple 

sample groups and covariates; it can fit non-normal distri-
butions, a common feature of gene expression data; and it 
can provide uncertainty estimates of model parameters.
Similar to gene expression, biological network analysis 
also uses the same logic. In biological network analysis, 
MCMC methods are often used to infer gene regulatory 
networks [6], where nodes represent genes and edges 
represent regulatory interactions. Specifically, the MCMC 
algorithm performs the following steps:
1. Initializes the network: Specifies initial values for nodes 
and edges in the network.
2. Calculate a posterior distribution: Use Markov chain to 
extract samples from a posterior distribution. A posteriori 
distribution is the joint distribution of network structure 
and parameters, given the observed data (e.g., gene ex-
pression data).
3. Update the network:  Update the network structure or 
parameters based on the value of the current sample in the 
Markov chain. This can be done by adding or removing 
nodes or edges, or updating edge weights.
4. Repeat steps 2-3:  Repeat steps 2-3 until the Markov 
chain reaches a stationary state, i.e. the network structure 
and parameter estimate no longer change significantly 
with the number of iterations.
Once the MCMC algorithm converges, the network struc-
ture and parameters can be used to infer gene regulatory 
interactions. Specifically, the researchers can identify edg-
es with a high posterior probability, indicating that they 
represent real regulatory interactions. The MCMC method 
has several advantages in biological network analysis. It 
can handle complex data types, such as gene expression 
data and protein interaction data. It can fit nonlinear mod-
els, which is a common feature of gene regulatory net-
works. It can provide uncertainty estimation of network 
structure and parameters. One concrete example is the use 
of MCMCS to infer gene regulatory networks that reg-
ulate cell cycles in yeast. The researchers used gene ex-
pression data from microarray experiments, in which the 
expression levels of genes in yeast cells were measured at 
different time points After the convergence of the MCMC 
algorithm, the researchers were able to identify gene reg-
ulatory interactions with high posterior probabilities and 
infer the gene regulatory networks that regulate the yeast 
cell cycle [7].

3.2 Application of MCMC method in Finance 
and Economics
Firstly, the author needs to explain the idea of GARCH 
model (Generalized autoregressive conditional hetero-
scedasticity model). Conditional heteroscedasticity is an 
econometric model used to capture financial time series 
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data. Conditional heteroscedasticity refers to the phenom-
enon that the difference of time series varies with time. 
The GARCH model, proposed by Engle (1982), captures 
conditional heteroscedasticity by modeling conditional 
variance as a function of past error terms and conditional 
variance The GARCH model, called the GARCH (1,1) 
model, is shown below:
 r rt t t t t t= + × = + × + ×µ σ σ ω α σ β , 2 2 2

− −1 1  (8)

where rt  is the yield of time t . µ  is the mean of the yield 

of time t . σ t is the conditional volatility of time t . t  is 
an independent uniformly distributed standard normal 
random variable. ω α,  and β  are the model parameters. 
The first part of the equation is a simple autoregressive 
model where the yield rt  consists of its mean μ and a ran-

dom error term σ t t× The second part of the equation de-

scribes the evolution of the conditional variance σ t
2 which 

consists of three parts: the constant term ω, which rep-
resents the long run mean of the conditional variance 
α σ× t−1

2 , representing the dependence of the conditional 
variance on the previous period conditional variance α  is 
called the autoregressive coefficient β × rt−1

2 , representing 
the dependence of the conditional variance on the square 
value of the previous period yield β  is called the ARCH 
coefficient (autoregressive conditional heteroscedasticity).
For an example, the parameters of the GARCH (1,1) mod-
el [8] were estimated using MCMC method. Consider the 
price of a financial asset to follow GARCH (1,1). In order 
to estimate the parameters of this model using the MCMC 
method, one can specify the following prior distributions: 
µ  (0,1)Normal , ω α β ( , )Inverse Gamma− , α  ( , )Beta a b1 1

, and β  ,Beta a b( 2 2 ) . Here, Normal(0,1)  is a normal dis-
t r i b u t i o n  w i t h  m e a n  0  a n d  v a r i a n c e  1 . 
Inverse gamma− ( , )α β  is an Inverse Gamma distribution 
with shape parameter α  and scale parameter β . Beta a b( , )  
is a beta distribution with shape parameter a and b.
People then use the Metropolis-Hastings algorithm to ex-
tract samples from the posterior distribution. A posteriori 
distribution is the joint distribution of model parameters, 
given the observed data (for example, the historical rate of 
return of an asset). Mathematically, the Metropolis-Hast-
ings algorithm is as follows: 1. Initialize the values of the 
parameters µ ω α, , , and β . 2.Generate the candidate pa-

rameter µ  '  from the normal distribution N ( , ).µ σ 2

3.Generate the candidate parameter ω’ from the Inverse 
Gamma distribution inverse gamma− ( , )α β . 4. Generate 

the candidate parameter α’ from the Beta distribution 
Beta a b( , ).1 1  5. Generate the candidate parameter β  '  

from the Beta distribution Beta a b( , ).2 2  6. Calculate the 
probability ratio of the posterior distribution at the candi-
date parameters:

 r =
p ' ' ' ' y
p y
(
(
µ ω α β
µ ω α β
, , , |
, , , | )

)  (9)

where y is the observed data (historical yield). S 7. If 
r >1 , the candidate parameter is accepted as the new pa-
rameter value. 8. If r≤1 , the candidate parameters are 
accepted with probability r. 9. Repeat steps 2-8 until the 
Markov chain reaches a stable state. When the MCMC al-
gorithm converges [6], the model parameters can be used 
to estimate the conditional distribution of asset returns. In 
other word, one can calculate the posterior predictive dis-
tribution of the future return of an asset, given past price 
information.

3.3 Application of MCMC Method in Physics
Before the author talks about the specific application in 
physics, some idea is crucial to understand the application 
later. The first idea is that cosmic microwave background 
radiation (CMB). The CMB is faint radiation left over 
from the Big Bang that carries important information 
about the early conditions and evolution of the universe. 
The MCMC method is used to fit CMB data to estimate 
cosmological parameters such as the Hubble Constant, 
matter density, and dark energy density. The second idea 
is that galactic rotation curve. Galactic rotation curve is a 
way to shows the relationship between the rotation speed 
of stars in the Milky Way and their distance from the ga-
lactic center.
One example is using MCMC to fit CMB data to estimate 
the Hubble constant, a parameter that describes the expan-
sion rate of the universe. Planck Full-ℓ, Planck ≤800 , 
Planck  > 800 , WMAP, ACTPol, and SPT. The author 
restricts the MCMC to TT power spectra in order to com-
pare with Percival et al [9]. To operate comparison with 
Fisher matrix predictions one only used multipoles where 
the likelihood for the power spectrum Cℓʼs is approxi-
mately Gaussian, and for this reason the author removed 
2 30≤ <  from the Planck Full ℓ, Planck ℓ ≤ 800, and 
WMAP analyses. For Planck this has only a minor effect 
on the power-law exponent. Are shown in following Table 
1. Table 1 has shown the output of H0  and Ωm . The spe-
cific use of MCMC is use to calculate the real value inter-
val.
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Table 1. Output of H0  and Ωm  for different experiments.

Experiment H0
 
 
 s Mpc×

km
Ωm ( )h2

PlankFull 67.4 1.0± 0.143 0.002±

WMAP 70.2 2.2± 0.136 0.005±

Planck ≤ 800 70.1 1.9± 0.137 0.003±

Planck > 800 65.0 1.5± 0.149 0.003±

ACTPol 74.3 5.7± 0.140 0.011±

SPT 74.5 3.4± 0.129 0.007±

4. Conclusion
To wrap-up, Markov Chain Monte Carlo (MCMC) has 
proven to be an invaluable tool in contemporary comput-
er-intensive statistics that allows a posterior distribution 
for complex problems to be achieved both rapidly and 
comprehensively. The MCMC theory, rooted in the fun-
damentals of Markov chain and Monte Carlo methods 
permits to estimate high dimensional integrals solve  the 
optimization issue efficiently. The author has seen the con-
siderable implications of MCMC methods in this paper 
on finance, where it helps improve risk management and 
portfolio optimization; computer science with Bayesian 
inference and machine learning as well biology from ge-
netic research to molecular simulations. Though MCMC 
methods are highly flexible and find wide application, that 
does not mean they don’t have their limitations. Hurdles 
for continual improvement include convergence, com-
putational cost and the quality of sampling algorithms. 
Efficiently processing these challenges lies at the heart 
of improving MCMC methods, primarily by leveraging 
algorithmic innovations and advancements in computa-
tional technologies. The key components of further stud-
ies will be the rate at which MCMC converges, reducing 
computational costs and exploring uncharted territories 
in cutting-edge areas. Better understanding of these areas 
can significantly advance MCMC methods and confirm 
their position as one of the pillars in modern statistical 
inference and computational modeling. This overview 
highlights the need for further optimization and imple-
mentation of MCMC methods, to enhance our understand-
ing in this area and pave way for more extensive research 

growth.
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