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Abstract:
This study explores the impact of customer engagement 
on conversion rates in the context of digital marketing 
scenarios. Different customer engagement indicators 
are studied in depth by integrating multiple linear 
regression and random forest model. A dataset containing 
demographic information, marketing variables, and 
customer engagement variables was obtained from Kaggle, 
and the model was constructed with customer engagement 
variables as explanatory variables and conversion as 
response variable. The results of the multiple linear 
regression model showed that variables other than social 
sharing had a significant positive effect on transformation, 
passed the F-test, and had no covariance or auto-correlation 
problems, but data normality was not fully satisfied. The 
random forest model was accurate and fitted well on the 
test set. The study shows that there are differences in the 
order of importance of customer engagement indicators 
in different models, and more accurate conclusions need 
to be analyzed in combination with practical application 
scenarios, so as to provide guidance for marketers to 
understand the relationship between customer engagement 
and conversion and formulate relevant strategies.

Keywords: Multiple linear regression; random forest; 
customer engagement; conversion; digital marketing.

1. Introduction
In today’s era of globalization, the rapid develop-
ment of digital technology has profoundly changed 

the world’s business landscape. The global econo-
my is constantly transforming and upgrading under 
the wave of digitization, and various industries are 
actively exploring how to utilize digital channels to 
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expand their business and enhance their competitiveness.
Thakur and Das proposed the application of SPSS soft-
ware in market research, including conducting accurate 
data analysis, identifying market trends, predicting con-
sumer behavior, and developing effective marketing strat-
egies [1]. There are various approaches to data analysis in 
business that can be selected based on data and specific 
research topics. For example, Shi et al. proposed an im-
proved linear regression algorithm including ridge regres-
sion, Lasso regression, and elastic network regression, 
introduced the process of business behavior analysis in-
cluding data collection, data preprocessing, data analysis, 
and data visualization, and validated the algorithm by ap-
plying it in the analysis of the sales data of an e-commerce 
company [2].
With the development of the Internet and the maturity of 
social media and online shopping software, digital mar-
keting occupies an increasing proportion of marketing. 
As a key area in this change, digital marketing has gained 
widespread attention and application worldwide.
In the field of digital marketing, numerous companies and 
marketers are working to improve the efficiency and ef-
fectiveness of their marketing campaigns. A deterministic 
factor analysis was employed, specifically using chain 
of alternatives, exponentials and integrals to reveal the 
isolated effects of factors as well as determining the order 
of the factors in the cofactor chain [3]. Factor analysis is 
used by Roy et al. to identify factors that influence con-
sumer behavior. Specifically, Kaiser-Meyer-Olkin (KMO) 
and Bartlett tests were included to verify the suitability 
of the variables for factor analysis, followed by principal 
component analysis with Varimax Orthogonal Rotation to 
determine the optimal factor structure [4]. In the general 
environment of expanding research in the field of digital 
marketing, there have been related studies that provide 
valuable references and insights for this paper.
For example, Zhang et al. constructed a model of the im-
pact of customer engagement on stickiness based on the 
theories of customer engagement, value co-creation and 
relationship marketing, and analyzed it using structural 
equation modeling to conclude that customer engagement 
has a direct positive impact on customer stickiness as well 
as an indirect impact through customer value creation [5]. 
This reveals that the role of customer engagement in dig-
ital marketing scenarios cannot be ignored and its impact 
may be multifaceted, which provides a similar research 
idea to explore the impact of customer engagement on 
conversion in digital marketing, i.e., customer engage-
ment may act on the core metrics that this paper focuses 
on through multiple pathways. Hampton et al. focused 
on customer engagement in the retail electricity market. 
The study not only establishes a definition of customer 

engagement in retail electricity markets, but also provides 
a systematic overview of these customer engagement 
strategies in retail electricity markets. It reminds people of 
the unique research value of customer engagement in dif-
ferent domains and the need to clarify the related concepts 
and key influences [6].
In summary, these studies provide guidance and implica-
tions for analyzing the impact of customer engagement 
on conversion rate in digital marketing scenarios based 
on multiple linear regression in a variety of ways, ranging 
from research methodology, research ideas to key factor 
analysis.
Conversion rate is one of the key indicators to measure 
the success of digital marketing campaigns. A high con-
version rate means that an organization can convert more 
potential customers into actual purchasers or long-term 
loyal users, thus achieving business growth and profit-
ability. With the rise of digital platforms such as social 
media and online communities, the forms of customer 
engagement have become increasingly diverse. Customers 
are no longer just recipients of information, but are able to 
actively participate in the marketing process, influencing 
marketing results by posting comments, sharing content, 
and engaging in interactions. However, the relationship 
between customer engagement and conversion has not yet 
been fully and deeply understood.
The topic of this paper is the effect of customer engage-
ment on conversion, which belongs to multiple indepen-
dent variables working together to influence the depen-
dent variable. Multiple linear regression model is widely 
used in this logistic relationship, with more established 
examples of practice in several fields. Popescu et al. used 
multiple linear regression algorithms to construct easily 
interpretable and understandable models to explore the 
impact of the type of activity students engage in on social 
media tools on the final learning outcomes [7]. Chen et al. 
examined the factors influencing the price of housing in 
Beijing to help people assess home purchase expectations, 
considered the interaction effects between variables, and 
solved the covariance problem by adding an interaction 
term and using Forward Stepwise Regression to make the 
model more accurately reflect the influencing factors of 
housing prices [8]. Ju et al. helped college students to un-
derstand the impact of different test scores on their chanc-
es of applying for graduate school admissions, so as to 
determine test preparation priorities, using a combination 
of simple linear regression, multiple linear regressions, 
and stepwise regression, the data were analyzed in depth, 
and the model was validated and optimized through t-tests 
and regression diagnostics [9].
Focusing on digital marketing scenarios, this study adopts 
multiple linear regression and random forest, aiming to 
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deeply explore the impact of customer engagement on 
conversion. Through the collection and analysis of rele-
vant data, it tries to establish a quantitative relationship 
model between customer engagement factors and conver-
sion rate, so as to provide valuable theoretical basis and 
practical guidance for enterprises on how to effectively 
improve customer engagement and thus conversion rate in 
digital marketing activities.

2. Methods

2.1 Data Source
The dataset from Kaggle is used to predict conversion 
in digital marketing. The data consists of demographic 
information, marketing-specific variables, customer en-

gagement variables, historical data, and target variable. 
Potential applications are predictive modeling of customer 
conversion rates, analyzing the effectiveness of different 
marketing channels and campaign types, identifying key 
factors driving customer engagement and conversion, 
optimizing ad spend and campaign strategies to improve 
Return On Investment (ROI) [10].

2.2 Variable Selection
The research topic of this paper is identifying key custom-
er engagement factors driving conversion, so this paper 
can choose customer engagement variables as the explan-
atory variables and conversion as the response variable. 
The meanings of the variables are as follows (Table 1):

Table 1. Variable introduction

Variable Logogram Meaning

Website Visits x1 Number of visits to the website

Pages Per Visit x2 Average number of pages visited per session.

Time On Site x3 Average time spent on the website per visit (in minutes)

Social Shares x4 Number of times the marketing content was shared on social media

Email Opens x5 Number of times marketing emails were opened

Email Clicks x6 Number of times links in marketing emails were clicked

Click Through Rate x7 Rate at which customers click on the marketing content

Conversion Rate x8 Rate at which clicks convert to desired actions (e.g., purchases)

Previous Purchases x9 Number of previous purchases made by the customer

Loyalty Points x10 Number of loyalty points accumulated by the customer

Conversion Y Binary variable indicating whether the customer converted (1) or not (0)

2.3 Method Introduction

2.3.1 Multiple linear regression

In this paper, the multiple linear regression model is used 
first, which has the advantage of having a clear mathe-
matical expression, and the coefficients can intuitively 
represent the direction and degree of the influence of each 
independent variable on the dependent variable; it has 
a certain degree of tolerance for the slight deviation of 
the data from these assumptions; and the computational 
process is relatively simple and mainly involves matrix 
arithmetic, with a low degree of complexity, so that it can 
quickly complete the training and prediction of the model.
However, it has certain limitations. Multiple linear regres-
sion assumes that there is a linear relationship between 

the dependent and independent variables and that the error 
term satisfies the conditions of normality, independence 
and homoscedasticity. In practical problems, these as-
sumptions may not be fully valid. If there are nonlinear 
relationships, interactions, or outliers in the data, multiple 
linear regression may not fit the data well, resulting in 
lower values. When analyzing the relationship between 
customer behavior and purchase intention, the customer’s 
purchase decision may be influenced by the interaction of 
multiple complex factors, and the relationship between 
these factors may not be a simple linear relationship.
2.3.2 Random forest

Random forest is an integrated learning method based 
on decision trees, which can automatically capture the 
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nonlinear relationships and interactions between indepen-
dent variables. Compared with multiple linear regression, 
random forests do not require strict assumptions about 
the distribution of the data and the relationships between 
the variables. By constructing multiple decision trees and 
integrating them, random forests can often achieve higher 
predictive accuracy than a single model. In many cases, 
when linear models perform poorly, random forests can 
improve the performance of the model by learning com-

plex patterns in the data.

3. Results and Discussion

3.1 Multiple linear regression
The analysis in this paper shows that there are many fac-
tors influencing conversion. As Figure 1 shows:
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Fig. 1 Pearson correlation analysis
At this point, a rough correlation between the data can be 
identified. The positive and negative values of Pearson’s 
coefficient can clearly reveal whether the variables are 
positively or negatively linearly correlated, and the abso-
lute value of the coefficient reflects the stronger the linear 
correlation between the variables. For multiple linear 
regression, the Pearson coefficient test is helpful in many 
ways. It assists in detecting multicollinearity problems. 
Through the Pearson’s coefficient test, if the absolute val-
ue of the coefficients between some independent variables 
is close to 1, then this paper needs to be alert to the fact 
that these independent variables may cause multicollinear-
ity problems, so as to deal with the variables appropri-
ately before the regression analysis. Secondly, it helps in 
the initial assessment of the importance of the variables. 
Those independent variables with high absolute values of 
Pearson coefficients with the dependent variable may have 
a greater impact on the dependent variable in multiple lin-
ear regression, which can provide a basis for prioritizing 

these variables in constructing the regression model.
In addition, the results of the Pearson coefficient test and 
the multiple linear regression results are compared with 
each other, and if they are consistent, the relationship be-
tween the variables can be further confirmed; if they are 
not consistent, it suggests that there may be other influ-
encing factors, which prompts people to further explore 
the underlying mechanisms behind the data.
After analyzing the Pearson correlation matrix for each 
factor, this paper can perform multiple regression analy-
sis. The formula is:
	 y x x x= + + + + +β β β β0 1 1 2 2 10 10  � (1)
The linear regression model has certain conditions for use: 
linear relationship, normality, homoscedasticity, residual 
independence, and no covariance. The test methods and 
determination results of these conditions in this paper will 
be explained individually later. The results of the multiple 
linear regression are shown in the table 2 below:
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Table 2. Multiple Linear Regression Analysis

Unstandardized coeffi-
cient

Standardized coefficient
t p

Covariance diagnostics

B S.E. Beta VIF Tolerance
Constant 0.296 0.02 - 14.802 0.000** - -

Website Visits 0.002 0 0.085 8.019 0.000** 1.002 0.998
Pages Per Visit 0.013 0.001 0.103 9.774 0.000** 1.001 0.999
Time On Site 0.01 0.001 0.132 12.543 0.000** 1.001 0.999
Social Shares 0 0 -0.009 -0.823 0.41 1.001 0.999
Email Opens 0.007 0.001 0.125 11.862 0.000** 1 1
Email Clicks 0.015 0.001 0.13 12.31 0.000** 1 1

Click Through Rate 0.5 0.041 0.128 12.104 0.000** 1.001 0.999
Conversion Rate 0.559 0.063 0.093 8.845 0.000** 1.001 0.999

Previous Purchases 0.013 0.001 0.114 10.789 0.000** 1.001 0.999
Loyalty Points 0 0 0.099 9.4 0.000** 1.001 0.999

R-square 0.113
F F (10,7989)=101.866,p=0.000

D-W value 1.72
* p<0.05 ** p<0.01

Table 2 shows that the model equation is:

+ + + + + +
y x x x x x
0.015 0.5 0.559 0.013 0.000
= + + + − +0.296 0.002 0.013 0.01 0.00 0.007

x x x x x6 7 8 9 10

1 2 3 4 5


�

� (2)
The final analysis shows that Social Shares does not affect 
Conversion and the rest of the variables have a significant 
positive effect on Conversion. The model R-squared val-
ue is 0.113, which means that the independent variable 
can explain the dependent variable‘s 11.3% of the cause 
of change. The F-test of the model found that the mod-

el passes the F-test (F=101.866, p=0.000<0.05), which 
means that at least one of the independent variables will 
have an impact on Conversion.
In addition, the multiple covariance test of the model 
reveals that the VIF values of the model are less than 5, 
indicating that there is no problem of covariance, and the 
D-W is around 2, indicating that there is no auto-correla-
tion in the model, and there is no correlation between the 
sample data, so the model is relatively good.
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Fig. 2 Normalized P-P plots of regression standardized residuals
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P-P plots are often used to visualize whether data are 
normally distributed (Figure 2). The principle is that if 
the data is normal, then the cumulative proportion of the 
data is basically the same as the cumulative proportion of 
the normal distribution. Use the actual data accumulation 
ratio as the X-axis and the corresponding normal distri-
bution accumulation ratio as the Y-axis to make a scatter 
plot. If the scatter plot appears as a diagonal line, then the 
data are normally distributed. Conversely, the data is not 
normal. From Figure 2, it can be found that the P-P plot of 
the residuals shows a certain trend but more points in the 
data do not lie on a straight line, thus indicating that the 
data do not quite satisfy the quality of normality. Howev-
er, the regression analysis in this paper only establishes 

the relationship between X and Y, without the need to pre-
dict the Y value credibility, the criteria of normality can be 
appropriately loosened.
The scatterplot of residual diagnosis will take its predict-
ed value as X-axis and the residual value as Y-axis, if all 
the points are uniformly distributed on both sides of the 
straight line Y=0, then it can be considered to satisfy vari-
ance chi-square. Figure 3 shows that there is a clear clus-
tering of three groups of points and the trend lines formed 
by these three groups are parallel, with distinct grouping 
characteristics, indicating that there may be some natural 
grouping of the data. This may be due to different custom-
er groups, different marketing channels and types causing 
this grouping.
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Fig. 3 Residual Diagnostic Graph

Table 3. Model Evaluation

R R square Adjusted R square Model error RMSE DW AIC BIC
0.336 0.113 0.112 0.31 1.72 3978.278 4055.137

According to Table 3, taken together, this model has some 
advantages, such as high overall significance and weak 
autocorrelation of residuals, but it also has some short-
comings, such as weak explanatory ability of the depen-
dent variable and the prediction accuracy needs to be im-
proved, but this does not have an impact on the research 
theme of this paper.

3.2 Random forest
Random forest model was performed with the 10 variables 
in Table 1 as the independent variables and transforma-
tion as the dependent variable, with the training set scale 
set at 0.8, the number of decision trees at 100, and the 
maximum depth of the trees unrestricted. The final model 
obtained 89.88% accuracy, 88.72% precision (combined), 
89.88% recall (combined) and 0.87 f1-score (combined) 
on the test set. The model results are acceptable.
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Fig. 4 Feature weight graph 
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Fig. 4 Feature weight graph
Figure 4 shows the importance of the contribution of each heading to the model.
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Figure 5 shows that the final R-square value obtained is 
0.90, indicating that the model fits the data well and has a 
strong explanatory ability for the dependent variable.

3.3 Discussion
The aim of this study was to analyze the impact of cus-
tomer engagement on conversion rates in Digital Mar-
keting Scenarios by using multiple linear regression and 
random forest models. Through these models, the author 
was able to rank the importance of several indicators of 
customer engagement. However, it is worth noting that the 
two models do not yield the same results, so the specific 
conclusions need to be analyzed in the context of actual 
application scenarios.
The result of Figure 4 and Figure 6 can help marketers 
prioritize their efforts and allocate resources more effec-

tively. Among these indicators, website visits and click-
through rates are relatively important factors. Marketers 
can use the results to refine their marketing strategies, 
such as optimizing ad texts, improving targeting, and en-
hancing the visual appeal of marketing campaigns, thus 
bringing more traffic to digital platforms and increasing 
conversion opportunities.
Social media sharing presents its relatively insignificant 
impact on conversion in both graphs. It may be more of 
a reflection of a user’s desire to express themselves, their 
need for social interaction, or their approval of the con-
tent, but it doesn’t directly equate to purchase intent or 
conversion behavior. Users may share content because 
they find it interesting, valuable, or to showcase their in-
terests, but they themselves may not necessarily make a 
purchase in the immediate or short-term.

7



Dean&Francis

925

Yanlin Lu

8 

Users may share content because they find it interesting, valuable, or to showcase their interests, but 
they themselves may not necessarily make a purchase in the immediate or short-term. 

 
Fig. 6 Multiple linear regression standardized coefficients 

4. Conclusion 
In conclusion, although this study provides some insights into the importance of certain customer 

engagement metrics, it is undeniable that the relationship between customer engagement and 
conversion exhibits a high degree of complexity, e.g., different customer segments as well as different 
marketing channels may have a significant impact on the relationship. 

In the actual digital marketing scenarios, choosing the right model is crucial in order to effectively 
analyze and predict customer behavior. However, there is no universal model that can be perfectly 
applied to all situations, and its applicability often depends on specific practical application scenarios. 
In a scenario with relatively simple variable relationships, a more basic model can meet the needs, 
while in the case of large-scale data, many variables and complex relationships, more complex and 
advanced models are required. 

Future research could focus on exploring different models and approaches to obtain more accurate 
predictions, thus providing digital marketers with more insights of practical operational value to help 
them make more informed decisions when developing, executing and optimizing their marketing 
strategies. 
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4. Conclusion
In conclusion, although this study provides some insights 
into the importance of certain customer engagement met-
rics, it is undeniable that the relationship between custom-
er engagement and conversion exhibits a high degree of 
complexity, e.g., different customer segments as well as 
different marketing channels may have a significant im-
pact on the relationship.
In the actual digital marketing scenarios, choosing the 
right model is crucial in order to effectively analyze and 
predict customer behavior. However, there is no universal 
model that can be perfectly applied to all situations, and 
its applicability often depends on specific practical appli-
cation scenarios. In a scenario with relatively simple vari-
able relationships, a more basic model can meet the needs, 
while in the case of large-scale data, many variables and 
complex relationships, more complex and advanced mod-
els are required.
Future research could focus on exploring different models 
and approaches to obtain more accurate predictions, thus 
providing digital marketers with more insights of practical 
operational value to help them make more informed de-
cisions when developing, executing and optimizing their 
marketing strategies.
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