
ISSN 2959-6157

Dean&Francis

954

Abstract:
With the high-speed development of integrated circuits,
digital systems are growing in size and complexity. In
complex digital systems, different modules may run under
different clock domains. For example, in a communication
system, the data receiving module and the data processing
module may be driven by different clocks, where it requires
an effective data caching mechanism to coordinate data
transfer between different clock domains. Asynchronous
FIFO meets this need. It can securely store and transfer
data between different clock domains, reducing the
possibility of data loss and errors. This paper gives a
comprehensive review of the design of asynchronous FIFO,
and summarizes the characteristics and advantages of
asynchronous FIFO in a metastable state, empty-full signal
creation, low latency, high throughput, parameterizable
design, and the performance of different design methods
and application scenarios by analyzing several related
research results. The purpose is to provide a reference for
further research and application of asynchronous FIFO.

Keywords: Asynchronous FIFO; metastable state; emp-
ty-full signal; low latency; parameterizable design

1. Introduction
GALS (Globally Asynchronous Locally Synchro-
nous) is an integrated circuit design method, and
asynchronous FIFO (First In First Out) is an arche-
type. In a GALS system, different modules can run
under separate local asynchronous clocks. This can
avoid some problems caused by global clock syn-
chronization, such as clock skew and clock distribu-
tion issues. Meanwhile, on a local scale, synchronous
design can be used within each module to simplify
design and improve performance.
As an important data cache structure, the design of
asynchronous FIFO poses a higher challenge. In

modern integrated circuits, data is often transmitted
in different time domains, and asynchronous FIFO
is mainly used for data transmission between differ-
ent clock domains, which can effectively solve the
problem of clock synchronization and ensure the
correct storage and reading of data [1]. In this regard,
asynchronous FIFO is more widely used than syn-
chronous FIFO, such as in network communication,
image processing, digital signal processing.
Presently, many research schemes have been ex-
plored and optimized for asynchronous FIFO, such
as Gray code, parallel design, combination with SOC
and NOC, parameterizable design, and interaction

Research Progress of Asynchronous FIFO
Design

Zhuocheng Wang

School of Physics, Sichuan
University, Chengdu, China
wangzc@stu.scu.edu.cn

1

Dean&Francis

955

Zhuocheng Wang

with communication protocol including UART. These
schemes improve the performance of asynchronous FIFO
to varying degrees, but there are some shortcomings,
which need further research and improvement.
This study hopes to explore the potential of their combi-
nation by analyzing the characteristics, advantages and
defects of each study. This research deeply studies the
existing schemes and the complementarity between them.
It is expected to propose a more optimized asynchronous
FIFO design scheme and provide a reference direction for
the development of integrated circuit technology.

2. Background of Asynchronous FIFO

Design
The structure of asynchronous FIFO can be seen in fig.
1, which mainly consists of storage unit, read pointer,
write pointer, full and empty signal. Data is written to the
storage unit in FIFO order. The write pointer points to the
current write position and the read pointer points to the
current read position. When a write operation occurs, the
write pointer increments and data is written to the storage
unit. When a read operation occurs, the read pointer is in-
cremented to read data from the storage unit [2]. By com-
paring the values of the write and read pointers, whether
the FIFO state is full, empty, or in the middle state can be
determined.

Fig. 1 Diagram of asynchronous FIFO[3]
At the beginning of asynchronous FIFO design, the prob-
lem of metastability is faced. Metastable is when the
sampled signal jumps along the clock and the register is
sampled to an intermediate value of the logical 0 and logi-
cal 1 reference voltages. Metastability gradually returns to
a logical 0 or 1 over time, where it is impossible to predict
whether it will become 0 or 1.
In general, the synchronous clock will not be metastable
in the case of guaranteed setup and hold, which is also the
reason why the synchronous clock does not need to turn
Gray code. The phase relationship of asynchronous clocks
can not be determined, so it is possible that the signal
before synchronization just jumps along the counterpart
clock. There is a probability of metastable state.
Asynchronous FIFO is an effective method to solve this
issue. By using specific design structure and protocol, it
can realize the secure transmission and storage of data be-
tween different clock domains. Asynchronous FIFO usual-
ly consists of the storage unit, read and write pointer man-

agement, and empty-full state judgment. Among them, the
management of read and write pointers and the judgment
of empty-full state are the key links of asynchronous FIFO
design [3].

3. The Design of Asynchronous FIFO

3.1 Using Gray Code to Reduce Metastability
For the creation of empty and full signals, the address
pointer is very crucial because the asynchronous FIFO has
the problem of judging read empty or write full across the
clock domain. The write and read pointer changes in se-
quence to ensure first-in-first-out [4]. When the Gray code
is used, the FIFO status is determined by comparing read
and write addresses, as shown in Table 1. If the highest
and second highest bits of the address are the same, FIFO
is empty. Likewise, if they are both different, FIFO is full.

2

Dean&Francis

956

ISSN 2959-6157

TABLE 1. The principle of state comparison

Gray Code Write Address Read Address State
Empty FIFO 0 0000 0 0000 empty
Full 1 1000 0 0000 full
Empty 1 1000 1 1000 empty
Full 0 0000 1 1000 full
Empty 0 0000 0 0000 empty

The Gray code is used in the asynchronous clock ad-
dress comparison because the orderly transformation of
the Gray code changes only 1bit at one time. While in
binary code, multiple bits can change 5 bits at the same
time, such as 01111→10000. Therefore, the probability of
metastability is reduced and the reliability of the signal is
enhanced due to the Gray code. At the same time, cross-
clock domains have read-slow-write-fast or read-fast-
write-slow situations, the solution is 2 registers. Although
it is time-consuming and the conservative judgment of
empty-full states affects performance, it does not affect the
function. In a word, generating empty-full status through
Gray code pointer and using 2 registers can effectively re-
duce the probability of metastability and improve system
stability [5].
However, the Gray code may also be metastable during
the jump. Because the metastable code will eventually
return to logical 0 or 1, the Gray code after metastability
may also have two situations compared with the state
before the jump. That is normal jump or no jump of the
signal.
For the normal jump, it will not have any effect on the
result. For the no jump, it will make the synchronized
pointer more conservative. It will not appear the situation
that it continues to write when FIFO is full or it continues
to read when it is empty. Although there is some impact
on the performance, the function is more reliable, which
is also an important reason for choosing to use Gray code
across the clock.

3.2 Low Latency and High Throughput
Traditional data transmission is normally a serial structure,
such as UART protocol, with input data going through
all cells to reach the output port. Hence, the cost of high
throughput is often high latency.
As shown in fig. 2, the most prominent feature of Y. Xiao
and R. Zhou’s design is the parallel loop structure, in
which each FIFO unit consists of a controller and a stor-
age unit, so that the unit can directly communicate with
the input and output ports through a common bus, without
passing all intermediate cells. The extra movement of data
from the input port to the output port can be eliminated [6].

Therefore, this cyclic architecture theoretically provides
a low latency, high throughput that is almost independent
of the number of FIFO stages, reducing time and power
consumption [6].

Fig. 2 Parallel circular asynchronous FIFO[6]

Fig. 3 An example of the protocol of FIFO[6]
For FIFO controllers, the study uses a monorail asynchro-
nous protocol to simplify the design, which can be seen in
fig. 3. Each unit controller only needs three C-gates, thus
reducing the chip area.
Simulation by TSMC 0.25㎛ CMOS logic process proves
that it does have very low latency, less than 581ps, and
throughput above 2.2GHz, which can meet the needs of
high-performance systems [6].
Through the parallel loop structure, the design can im-
prove the throughput while ensuring that the delay does
not improve with the increase of FIFO series. It demon-
strates the stability in large-scale data storage and process-
ing to a certain extent.
Nevertheless, this verification method relies on TSMC
0.25㎛complementary metal-oxide-semiconductor logic
process, which may have different performance under dif-
ferent processes.

3

Dean&Francis

957

Zhuocheng Wang

3.3 FIFO Buffer Application on SOC
With the development of chips, more and more IP(Intel-
lectual Property) needs to be integrated on the SOC(Sys-
tem on Chip). Asynchronous design does not involve
complex clock distribution, so it can decrease the chip
area of clock management on the SOC.
Because the asynchronous FIFO is designed with GALS
and allows the integration of components with various
time characteristics, it is friendly for SOC designs that
need to integrate a variety of IPs involving different clock
signals.
M. Menaka (2023) and Suruchi Chaturvedi (2024) de-

signed the buffer architecture as a circular queue, and then
compared the performance differences between synchro-
nous and asynchronous designs in terms of power con-
sumption, delay, throughput, and chip area [7]. Both were
simulated using LTSpice on TSMC 180nm technology.
The power consumption comparison of synchronous and
asynchronous circuit four-stage FIFO buffer design is
shown in Table 2, concluding that the power consumption
of asynchronous design is about 50% lower than that of
synchronous design [8]. This can effectively show that in
the application of FIFO buffer on SOC, the asynchronous
design can greatly reduce power consumption.

Table 2. Efficiency metrics[8]

Performance Metric Synchronous Design Asychronous Design
Power dissipation 28.57μW 14.93μW

Cycle time 1ns 2ns
Throughput 1Gbits/s 0.5Gbits/s

Write Latency 395ps 194ps
Read Latency 387ps 1067ps

Transistor Count 804 733

This design performs well when it comes to write latency,
but is flawed in terms of read latency, which is around
175% higher than that of synchronous design. The asyn-
chronous design also lags behind the synchronous design
in terms of throughput. Its characteristics may also be
subject to process limitations of TSMC 180nm.

3.4 Asynchronous FIFO for PVT Changes
PVT refers to the changes in the Process, Voltage and
Temperature of the integrated circuit manufacturing
process. Traditional SOC has an increasing number of
Processing Elements (PEs) on a single module, and they
are in a state of communication with each other, sharing
information, forming an information network, often called
Network on Chip (NoC).

PEs communicate with each other by clock. As a result,
for unbalanced clock distribution, data that violates the
establishment/retention time of the clock edge may cause
information loss or communication interruption due to
changes in PVT. In addition, multiple clock domains typi-
cally consume plenty of power, and a single clock domain
might span many square millimeters.
In order to solve these shortcomings, S. Abdel-Hafeez and
M. Q. Quwaider proposed the design of energy-saving
asynchronous FIFO memory based on handshake signal
(request signal and acknowledgement signal) as shown
in fig. 4. In this way, each PE has an asynchronous FIFO,
while the FIFO has no clock signal. The next PE receives
a request signal from the communication PE to work [9].
In response, it generates an acknowledgement signal to
synchronize write/read operations within the FIFO [9].

Fig. 4 Asynchronous signaling circuit[9]

4

Dean&Francis

958

ISSN 2959-6157

The design has a clear sequential structure, and the se-
quence of signals can be guaranteed by requesting confir-
mation signals. Compared with the effect of PVT on the
clock, the its effect on the transistors after removing the
clock is acceptable, and the metastability and delay caused
by the clock signal are avoided.
The simulation results show that the data-access speed is

fast. The asynchronous FIFO read operation can read data
on the bus after 20-gate delays at the edge of the request
signal, where each gate delay is about 0.02ns, so the read
operation can read after 0.5ns at the edge of the request
signal [9]. Similarly, write operations can push data at the
memory array unit after a 12-gate delay, nearly 0.25ns,
relative to the edge of the write request signal [9].

Table 3. Signal definitions[9]

Components COMS Transistor Counts
Power

Consumptions
(mW)

Control Unit 72 0.04
Parallel Counter 460 0.27
Address Decoder 384 0.19
Empty-Full Flags 146 0.11
64-word x 64-bit
SRAM 8T-Cell

33408 1.3

Table 3 shows that it can be considered as a potential
choice technology for low-power applications, total power
consumption at 65nm and 1V supply is only 2mW. In the
case that the clock distribution will increase the power
consumption, the design can greatly reduce the overall
power consumption of the system. It can also avoid the
influence of excessive current and heat on other perfor-
mance of the system. At the same time, the design avoids
the rigorous clock control to occupy the chip area.
However, new asynchronous circuits may increase the
complexity of design and layout, and bring some difficul-
ties to design and implementation.

3.5 Parameterizable Design and Modular Asyn-
chronous FIFO
H. Ashour design realizes the parameterization of data in-

terface width and memory depth. First of all, based on the
design of the read and write pointer to form the empty-full
signal in turn, it reflects the asynchronous FIFO design
technology. Thus, it also demands that the read pointer
and the write pointer can be parameterized, meaning the
empty-full signal can also adapt to this point.
The design scheme can be parameterized through Verilog
HDL code, and each module is configured separately and
the code is independent. As a consequence, each module
in the architecture has independent and self-contained
functions, providing a modular interface for other sys-
tem-level components, which can be reused in other sys-
tems [10]. The FIFO threshold can be reconfigured at run
time. During FIFO instantiation, the HDL parameters, as
shown in Table 4 for example, can be reallocated [10].

Table 4. Parameters[10]

Parameter Description Notes

DATA_SIZE
Determines the width of the
wdata/rdate ports

ADDR_SIZE
Determines the width of the write pointer,
read pointer, near full threshold value and
near empty threshold value

FIFO memory depth is calculated to be
two to the power of value of this parameter

The parameterizable design can flexibly adjust the data
interface width and memory depth according to different
application scenarios, and the universality and adaptabil-
ity of the design are greatly enhanced. At the same time,
the function of modules in the architecture is independent,

which is easy to maintain and expand, improving the reus-
ability of the design and reducing the cost of development.
In the meantime, the FIFO threshold can be reconfigured
during running, so that it can meet the different require-
ments of different applications for empty-full signals. Fur-

5

Dean&Francis

959

Zhuocheng Wang

thermore, it is suitable for rate matching, reconfigurable
hardware and data flow application scenarios.
However, parameterized and modular designs may in-
crease the complexity of the design. For instance, recon-
figuring the threshold at run time may give rise to a cer-
tain performance cost, affecting the FIFO read and write
speed. At the same time, modular design may occupy
more hardware resources, especially on the FPGA plat-
form with limited resources, which may affect the realiza-
tion of other functional modules.

3.6 Buffering Characteristics of FIFO and Its
Application in UART
UART (Universal Asynchronous Receiver/Transmitter) is
a universal serial and asynchronous communication proto-
col. In UART, the sender converts parallel data into serial
data, then adds start bit, data bit, check bit, stop bit, and
other information. Then it is sent out bit by bit, as shown
in fig. 5. The receiver detects the arrival of the data based
on the start bit, receives the data bit by bit in an agreed
format, and then converts the serial data into parallel data
for subsequent processing.

Fig. 5 Data frame format of UART
Protocol[11]

Wenyu Wang (2023) uses FIFO buffer to solve the prob-
lem of UART data transmission, utilizing Verilog for
design and asynchronous FIFO characteristics to com-
prehensively improve the performance of UART commu-
nication protocol. It also involves the implementation of
FPGA platform.
The design uses the isolation characteristic of asynchro-
nous FIFO to solve the problems of different clock do-
mains, transmission rates and interface widths. Besides, it
creates a data buffer to solve data loss or rewriting prob-
lems when devices are out of sync. In addition, this design
establishes a communication network control system mod-
el to determine the optimal sampling times and upper limit
to avoid large delays [11]. Moreover, the study adopts the
optimal frequency doubling sampling technique, and the
functional simulation is carried out by ModisticSE-64 [11].
This design can improve transmission efficiency, reduce
bit error rate, and be more competitive in anti-interfer-

ence.
Although the introduction of asynchronous FIFO and data
buffer in UART improves the stability of data, the design
of comprehensively improving the system performance
may occupy certain hardware resources and increase the
system cost. It does not explicitly mention the resource
occupation situation, which may denote that it is not opti-
mized in terms of resource utilization.

4. Conclusion
This paper deeply studies different aspects of asynchro-
nous FIFO design, and finds that using Gray code pointer
and two-stage synchronizer can reduce metastable proba-
bility and improve system stability, which is of great value
in cross-clock domain design. The parallel cycle structure
reduces time and power consumption and it has the char-
acteristics of low delay and high throughput, meaning the
delay does not increase with the increase of FIFO series,
so as to meet the high performance requirements. Using
asynchronous design on SOC can reduce the area of clock
management chip and integrate different clock signal
components. Simulation shows that the asynchronous de-
sign has low power consumption and low write delay, but
it has read-delay defects and the results may be limited
by 180nm process. The design based on handshake signal
greatly reduces the impact of PVT, avoids metastability
and delay, and has fast read and write speed, which is a
potential choice for low-power applications. However,
it may increase the difficulty of design and layout. Para-
metric and modular design can increase versatility and
adaptability while reducing developmental costs, whereas
it may increase the complexity, affecting the read-write
speed, and occupying more hardware resources. The com-
bination with UART improves the performance of the sys-
tem as a whole. In the future, asynchronous FIFO designs
may focus on reducing design complexity and power
consumption while ensuring comprehensive performance,
such as exploring new coding methods and structures.
Meanwhile, it should improve the stability under different
processes and combine with new communication proto-
cols to further the versatility. As a consequence, asynchro-
nous FIFO can adapt to more complex and changeable
application requirements.

References
[1] Himanshu and C. Charan, A 16-Byte Asynchronous Gray
Code FIFO Memory Using Verilog HDL for Real-Time
Applications, 2024 2nd International Conference on Device
Intelligence, Computing and Communication Technologies
(DICCT),2024: 707-711.

6

Dean&Francis

960

ISSN 2959-6157

[2] Z. Hao, L. Liu and B. Tian, The Principle and Applications of
Asynchronous FIFO, 2023 IEEE 2nd International Conference
on Electrical Engineering, Big Data and Algorithms (EEBDA),
2023: 277-279.
[3] V. Patel, V. Mer, J. Patoliya and B. Soni, Design
Implementation of Novel Asynchronous FIFO,” 2023 IEEE
International Symposium on Smart Electronic Systems (iSES),
2023: 292-295.
[4] Shivali and M. Khosla, Coverage of Meta-Stability Using
Formal Verification in Asynchronous Gray Code FIFO, 2022 2nd
International Conference on Intelligent Technologies (CONIT),
2022: 1-8.
[5] X. Ren, C. Li and K. Liu, Design and Implementation
of High-Reliability FIFO Based on FPGA, 2023 IEEE 7th
Information Technology and Mechatronics Engineering
Conference (ITOEC), 2023: 480-484.
[6] Y. Xiao and R. Zhou, Low latency high throughout circular
asynchronous FIFO, in Tsinghua Science and Technology, 2008,
13(6): 812-816.
[7] M. Menaka, A. K, T. R. Dinesh Kumar, S. K. G, S. W. M,
and V. R. M, Asynchronous Circular Buffers based on FIFO for

Network on Chips, 2023 International Conference on Circuit
Power and Computing Technologies (ICCPCT), 2023: 1356-
1361.
[8] S. Chaturvedi, S. M. N and R. Rao, Design of Asynchronous
Circular FIFO Buffer for Asynchronous Network on Chips,
2022 International Conference on Distributed Computing, VLSI,
Electrical Circuits and Robotics (DISCOVER), 2022: 66-71.
[9] S. Abdel-Hafeez and M. Q. Quwaider, A One-Cycle
Asynchronous FIFO Queue Buffer Circuit, 2020 11th
International Conference on Information and Communication
Systems (ICICS), 2020: 388-393.
[10] H. Ashour, Design, simulation and realization of a
parametrizable, configurable and modular asynchronous FIFO,
2015 Science and Information Conference (SAI), 2015: 1391-
1395.
[11] W. Wang, Optimization of UART Communication
Protocol Based on Frequency Multiplier Sampling Technology
and Asynchronous FIFO, 2023 IEEE 2nd International
Conference on Electrical Engineering, Big Data and Algorithms
(EEBDA),2023: 280-285.

7

