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Abstract:
This study proposes a hybrid model based on the 
combination of a convolutional neural network (CNN) 
and a long short-term memory network (LSTM) for the 
classification of electroencephalographic (EEG) signals, 
with a particular focus on the motor imagery task in the 
BCI Competition IV Dataset 2a. The usability of the 
data is enhanced by band-pass filtering and independent 
component analysis (ICA), which effectively removes 
artefacts and noise from the signal, thus improving the 
quality of the data. In the process of feature extraction, 
time-domain statistical features are employed, while high-
dimensional features are reduced in dimension through 
principal component analysis (PCA), thus enhancing the 
computational efficiency and classification performance 
of the model. This paper experimental results show that 
the CNN-LSTM model achieves 100% accuracy on the 
training set, but only 72.41% on the test set. These findings 
suggest that the model demonstrates robust classification 
capabilities when processing training data, but exhibits 
some limitations in its ability to generalise to previously 
unseen data. This paper also discusses the limitations of the 
model and makes suggestions for improvements to further 
optimise its generalisation performance and enhance the 
results of its applications.
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1. Introduction
Brain-computer interface (BCI) technology provides 
a novel method of information exchange through the 
acquisition and decoding of electroencephalogram 
(EEG) signals. These signals are generated by chang-
es in the electric field triggered by neuronal activity 
in the brain and represent a valuable tool for studying 
brain function and its activity [1]. BCI systems em-
ploy EEG signals to decode brain activity, thereby 

enabling the control of external devices. This tech-
nology is widely utilized in the fields of medicine, 
neuroscience, and human-computer interaction [2]. 
In numerous BCI applications, the real-time classi-
fication of EEG signals represents a pivotal technol-
ogy, with its performance directly influencing the 
system’s response speed and accuracy [3].
EEG signals are characterized by high time vari-
ability, nonlinearity, and low signal-to-noise ratio. 
These characteristics pose significant challenges for 
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real-time processing and classification [4]. The current 
mainstream classification algorithms include traditional 
machine learning methods such as Support Vector Ma-
chine (SVM), k-Nearest Neighbor (kNN), Random Forest 
(RF), and Multi-Layer Perceptron (MLP). Meanwhile, 
deep learning methods such as convolutional neural net-
works (CNNs), recurrent neural networks (RNNs) and 
long short-term memory (LSTM) are also widely used. 
LSTMs have also been widely used in EEG signal classi-
fication studies [5]. These methods have shown efficacy in 
offline classification. However, numerous technical chal-
lenges still need to be addressed for real-time applications 
[6].
To enhance the real-time classification accuracy of EEG 
signals, it is essential to optimize several key aspects: data 
preprocessing, feature extraction and selection, classifica-
tion algorithm optimization, and system architecture de-
sign. Data preprocessing forms the foundation of classifi-
cation. It involves employing filtering and artifact removal 
techniques, which can markedly enhance signal quality 
and system robustness [7]. Secondly, feature extraction 
and selection represents a crucial step in optimising classi-
fication performance. The selection of appropriate features 
will significantly enhance the accuracy and efficiency of 
the classification algorithm [8]. Furthermore, optimising 
the classification algorithm and combining parallel pro-
cessing and hardware acceleration techniques is essential 
for achieving efficient real-time classification [9]. Finally, 
a well-designed system architecture, encompassing appro-
priate hardware selection and optimal software integra-
tion, is crucial for ensuring efficient real-time processing 
[10].
The objective of this study is to investigate the most ef-
fective methods for enhancing the real-time classification 
accuracy of electroencephalogram (EEG) signals and 
to develop an efficient real-time classification system. 
Specifically, the objective is to enhance the real-time 
performance and classification accuracy of the system by 
optimising data preprocessing techniques, refining fea-
ture extraction and selection methods, investigating and 
implementing advanced classification algorithms, and in-
tegrating hardware acceleration techniques. The results of 
the experimental verification and performance evaluation 
of the system will provide reliable technical support and a 
theoretical basis for the practical application of BCI sys-
tems.
T This paper is organized as follows: Section 2 provides 
a comprehensive literature review, covering the funda-
mental characteristics of EEG signals, current real-time 
classification methods, and strategies for improving re-
al-time performance. The third part outlines the research 
methodology, which encompasses data acquisition and 
pre-processing, feature extraction and selection, optimisa-

tion of classification algorithms, and the experimental de-
sign. The fourth part presents the experimental results and 
analyses, offering a detailed evaluation of the system per-
formance. The fifth part discusses the research findings, 
limitations, and potential avenues for future research. Fi-
nally, the sixth part summarises the primary contributions 
and research outcomes of this study. This paper aims to 
advance real-time EEG signal classification technology 
and provide a solid foundation for the widespread use of 
BCI systems.

2. Literature Review
Electroencephalographic signals, weak electrical signals 
generated by neuronal activity in the cerebral cortex, are 
acquired by placing electrodes on the scalp surface. The 
properties of EEG signals include time-varying, nonlinear, 
and low signal-to-noise ratios, which present a significant 
challenge in terms of processing and analysis [4]. Nunez 
and Srinivasan provided a comprehensive description 
of the physical background of the EEG signals in their 
work, including an explanation of the basic properties, the 
mechanism of electric field propagation in the brain, and a 
detailed account of how EEG signals in different frequen-
cy bands correspond to different functional states of the 
brain [1]. Such knowledge is essential for understanding 
the complexity of EEG signals and their application in 
brain-computer interfaces.
Real-time classification represents a pivotal technology 
in the domain of brain-computer interface systems, with 
its performance directly influencing the system’s response 
speed and user experience. In the current research land-
scape, real-time classification methods are primarily clas-
sified into two categories: traditional machine learning 
methods and deep learning methods. Traditional machine 
learning methods, such as support vector machines (SVM), 
k-nearest neighbour (kNN) and random forest (RF), have 
been extensively employed in EEG signal classification. 
These methods possess relatively straightforward imple-
mentations and low computational complexity. However, 
their performance may be compromised when confronted 
with large-scale data and high-dimensional features [3].
Improvements in computational power have facilitated 
a gradual increase in the application of deep learning 
methods for EEG signal classification in recent years. 
Schirrmeister et al. demonstrated the potential of deep 
learning in improving classification accuracy by decoding 
and classifying EEG signals through convolutional neural 
networks (CNNs) [4]. In comparison to traditional meth-
odologies, deep learning techniques are capable of auto-
matically extracting high-level features, thereby reducing 
the necessity for manual feature engineering. They are 
particularly well-suited to the classification of complex 
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EEG signals. However, deep learning models typically ne-
cessitate longer training periods and greater computational 
resources, which present challenges in real-time applica-
tions.
In order to achieve real-time classification of EEG signals, 
it is necessary to select appropriate classification algo-
rithms and to implement improvements in terms of data 
preprocessing, feature extraction and algorithm optimisa-
tion. The study conducted by Makeig and Onton demon-
strated that Independent Component Analysis (ICA) has a 
significant effect in removing artefacts and noise from the 
EEG signals, which significantly improves the quality of 
the signals and thus enhances the accuracy of the classifi-
cation [5]. Roy et al. conducted a comprehensive review 
of deep learning-based EEG analysis techniques. Their 
study highlighted that parallel processing and hardware 
acceleration methods can significantly improve the mod-
el’s real-time performance [6].
In the realm of real-time classification, feature extraction 
and selection play a pivotal role. Commonly used methods 
include the wavelet transform, power spectrum analysis, 
principal component analysis (PCA) and linear discrim-
inant analysis (LDA). These methods are able to extract 
representative features that simplify the classification 
model and improve its efficiency [7]. Furthermore, par-
allelisation of algorithms and hardware acceleration (e.g. 
using GPUs or FPGAs) are important technical strategies 
to improve real-time performance [8].
The rationality of the experimental design and system 
architecture has a decisive impact on the performance of 
a real-time EEG classification system. In his book, Cohen 
provides theoretical and practical guidance on the anal-
ysis of neural time-series data, including aspects of data 
acquisition, preprocessing, and feature extraction. This 
guidance is crucial for designing rigorous experimental 
protocols [7]. Furthermore, the EEGLAB toolbox, devel-
oped by Delorme and Makeig, offers a comprehensive 
range of functions for processing and analysing EEG data. 
It supports a variety of commonly used EEG processing 
methods, including independent component analysis, 
which is of significant practical value in the development 
of real-time systems [8].
In terms of practical system implementation, Wolpaw et 
al. undertook a comprehensive review of the fundamen-
tals and applications of brain-computer interface (BCI) 
systems, and proposed a general framework, specifically 
designed for real-time communication and control [9]. 
Mason and Birch further proposed a general framework 
for BCI design, which provided guiding suggestions for 
real-time processing and system implementation. These 
studies provide a robust theoretical foundation and practi-
cal guidance for the design and optimisation of real-time 
BCI systems [10].

While existing research has made significant strides in 
real-time classification of EEG signals, several challenges 
persist. These challenges primarily revolve around im-
proving real-time classification accuracy and developing 
more robust classification systems. Despite the consider-
able promise of deep learning techniques, there are inher-
ent constraints to their deployment in real-time scenarios. 
Furthermore, the advancement of feature extraction and 
algorithm optimisation techniques is of paramount impor-
tance to enhance the real-time performance and accuracy 
of the system. It is therefore recommended that future 
research should continue to focus on how to improve clas-
sification accuracy while ensuring real-time performance. 
In addition, new optimisation strategies and acceleration 
techniques should be explored in order to promote the 
development and application of EEG signal classification 
techniques.

3. Results
The objective of this study is to develop and validate a 
deep learning model that employs a combination of con-
volutional neural networks (CNNs) and long-short-term 
memory networks (LSTMs) for the classification of elec-
troencephalogram (EEG) signals associated with motor 
imagery tasks within the BCI Competition IV Dataset 2a. 
The research methodology encompasses data preprocess-
ing, feature extraction and dimensionality reduction, mod-
el design and optimisation, and performance evaluation.

3.1 Data set description and pre-processing
The dataset employed in this study is derived from the 
BCI Competition IV Dataset 2a and encompasses electro-
encephalogram (EEG) data obtained from nine subjects 
while engaged in a four-category motor imagery task. In 
order to enhance the quality of the data and the validity 
of the model, the preprocessing stage initially employs 
band-pass filtering of the raw EEG signals at a frequency 
range of 1-30 Hz, with the objective of removing noise 
such as work frequency interference and low frequency 
drift. Subsequently, an independent component analysis 
(ICA) method was employed to further remove artefactual 
signals, such as ocular and cardiac interference, thus en-
suring the purity of the data. The processed EEG signals 
were constructed in the form of time series, providing a 
foundation for subsequent feature extraction.

3.2 Feature Extraction and Dimension Reduc-
tion
To extract effective time-domain features from EEG sig-
nals, this paper focused on six key metrics. These include 
the mean, standard deviation, skewness, kurtosis, root-
mean-square, and extreme deviation of each subject’s 
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EEG data. These features provide insights into the statis-
tical properties and temporal trends of the EEG signals. 
To mitigate the risk of model overfitting due to high-di-
mensional feature space, this paper employed principal 
component analysis (PCA) for dimensionality reduction. 
This paper selected the top 10 principal components as 
this paper final feature vectors based on their cumulative 
variance contribution ratio. This approach reduced feature 
dimensionality while retaining most of the original data’s 
information, thereby enhancing the model’s generalization 
ability.

3.3 Design of the CNN-LSTM model
To address both spatial and temporal dependencies of 
EEG signals, this paper propose a hybrid CNN-LSTM 
model. This model aims to comprehensively capture the 
spatio-temporal features of EEG signals. The spatial char-
acteristics of EEG signals are initially extracted through 
the utilisation of a convolutional neural network (CNN) 
layer.
Specifically, the convolutional operation extracts high-di-
mensional local features using multiple convolutional 
kernels within a specified time window. This processing 
technique can effectively capture signal variations at vary-
ing spatial locations. To circumvent feature overfitting and 
simultaneously refine the global information, the model 
incorporates Global Average Pooling (GAP) and Global 
Maximum Pooling (GMP) operations to reduce the data 
dimensionality and maintain the representativeness of the 
features.
This paper also incorporated a spatial attention mechanism 
into the model design. This mechanism aims to enhance 
the recognition of important spatial features. This mecha-
nism serves to ensure that critical information is retained 
during feature fusion by combining the pooled features 
with the output of the convolutional layer, thus improving 
the effectiveness of classification. Based on the high-di-
mensional features extracted by the CNN, the LSTM layer 
is trained to learn the temporal dependencies of the EEG 
signals. The LSTM layer is capable of effectively cap-
turing the dynamic changes and temporal structure of the 
signals through the gating mechanism, and is particularly 
adept at handling the long- and short-term dependence ob-
served in EEG signals.
In order to further enhance the performance of the model 
in processing long time series data, the model also incor-
porates the self-attention mechanism, which enhances the 
LSTM’s ability to perceive signals over long time spans. 
Subsequently, the LSTM-processed features are fed into 
the fully-connected layer for further feature integration, 
and a softmax classifier is employed for the classification 

of the two-class motion imagery task. The incorpora-
tion of a convolutional neural network (CNN) for the 
extraction of spatial features, a long short-term memory 
(LSTM) unit for the capture of temporal dependence, and 
an attention mechanism enables the model to analyse elec-
troencephalogram (EEG) signals in a more comprehensive 
manner, resulting in enhanced classification outcomes.
The model demonstrates efficacy in classification accura-
cy, time-dependent modelling, and the handling of spatial 
and temporal features of EEG signals, thereby substantiat-
ing its effectiveness in the classification of motor imagery 
tasks. The model’s design not only enhances classification 
accuracy but also demonstrates high computational effi-
ciency and real-time performance, rendering it well-suited 
for practical EEG signal classification applications.

3.4 Model Training and Optimisation
This paper employs the Adam optimization algorithm to 
optimize the model parameters during training. This algo-
rithm combines the features of momentum and adaptive 
learning rate tuning, thereby improving the convergence 
speed of the model during the training process while 
maintaining stability. In order to enhance the model’s 
generalisation capacity and prevent overfitting, key pa-
rameters such as the initial learning rate, learning rate 
decay and L2 regularisation were set. The aforementioned 
hyperparameters are set with the objective of optimising 
the training efficiency and stability of the model. In partic-
ular, the initial learning rate during training is set to 0.004, 
thereby ensuring that the model is able to converge rapid-
ly in the initial phase. In subsequent training phases, the 
learning rate is gradually decreased in order to enhance 
the model’s capacity for precise parameter calibration. 
The application of L2 regularisation enables the control of 
model weights, preventing their excessive expansion and 
thus reducing the likelihood of overfitting while enhanc-
ing the model’s generalisation performance.
To evaluate the model’s performance across different 
datasets and assess its robustness, this paper employs 
a cross-validation methodology. The application of 
cross-validation, whereby the training dataset is split mul-
tiple times and the training is repeated, enables the per-
formance of the model to be effectively measured under 
different data distributions, thus further reducing the risk 
of overfitting. Furthermore, to enhance the training effi-
ciency and circumvent overfitting, this study incorporates 
an early-stop strategy. This entails the automated termina-
tion of the training process when the model’s performance 
on the validation set ceases to improve, thus averting the 
decline in performance that can result from over-training.
In order to further optimise the model performance in the 
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classification task, a hyperparameter search and tuning 
was carried out, and the impact of different hyperpa-
rameter combinations on the model effect was explored. 
Ultimately, a hybrid model integrating a Convolutional 
Neural Network (CNN) and a Long Short-Term Memory 
Network (LSTM) was selected. The convolutional neural 
network (CNN) is employed to extract spatial features 
from the data, while the long short-term memory (LSTM) 
network is responsible for capturing temporal information. 
Through this combination, the model is able to efficiently 
process the time-dependent electroencephalogram (EEG) 
signals.
To improve the model’s classification proficiency, this pa-
per employed data augmentation techniques. These tech-
niques increase data diversity through appropriate trans-
formations, enhancing the model’s adaptability to various 
data distributions. Furthermore, this study introduces a 
model fusion technique, which weights and averages the 
outputs of the CNN and LSTM, thus enhancing the final 
classification performance.
The optimisation strategies employed have resulted in a 
model that demonstrates satisfactory performance in the 
classification of EEG signals, thereby substantiating its ef-
ficacy and potential utility in the context of motor imagery 
tasks.

4. Experimental results and analyses
This study have devised and implemented a hybrid con-
volutional neural network (CNN) with long short-term 
memory (LSTM) model based on the BCI Competition 
IV Dataset 2a. The objective is to evaluate its classifica-
tion performance in a motor imagery task. This section 
presents a detailed analysis of the experimental results, 
demonstrating the effectiveness and limitations of the 
model through the use of various visualizations, and sug-
gests potential improvements.

4.1 Effectiveness of Data Preprocessing and 
Feature Extraction
The preprocessing of data represents a pivotal stage in the 
classification of electroencephalogram (EEG) signals. In 
the present study, the raw EEG signals were subjected to 
a 1-30 Hz bandpass filtering process and an independent 
component analysis (ICA) denoising procedure. Fig. 1 
illustrates the contrast between the original signal and the 
pre-processed signal. The implementation of these prepro-
cessing techniques significantly reduced signal artifacts, 
thereby enhancing overall signal quality.

Fig. 1 Comparison of raw EEG signal and pre-processed signal (Photo/Picture credit: 
Original)

In order to extract the relevant features, six statistical 
properties were calculated based on the time domain. 
These were the mean, standard deviation, skewness, 

kurtosis, root mean square value and extreme deviation. 
Following this, a principal component analysis was 
conducted in order to reduce the dimensionality of the 
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data set. Table 1 presents the statistical outcomes of the 
time-domain features for a selected cohort of subjects. 
The experiment demonstrates that selecting the initial 10 

principal components is an effective method for retaining 
the primary information of the original data set while re-
ducing the redundancy of feature dimensions.

Table 1. Statistics of Time Domain Characteristics of Selected Subjects

Subject 1 Subject 2 Subject 3
Mean 0.2238 0.1349 0.5241
Standard deviation 8.8854 8.8807 8.7213
Skewness 0.0331 0.0307 0.0304
Kurtosis 3.1351 3.1778 3.1683
Root Mean Square 9.0365 9.0433 8.8641
Polar deviation 50.7361 50.7708 50.0008

4.2 CNN-LSTM model training and testing re-
sults
In the course of training the model, the Adam optimiser 
was employed for the CNN-LSTM hybrid model. The 
model rapidly achieved 100% accuracy on the training set, 
reaching this milestone after approximately 1,000 itera-
tions. This was accompanied by a notable reduction in the 
loss function. This suggests that the model is adequately 
fitting to the training set. The model demonstrated a satis-
factory performance on the test set, attaining an accuracy 
of 72.41% and an average test time of 0.2372 seconds per 
test sample. However, a decline in accuracy on the test set 
in comparison to the training set indicates that, while the 
model exhibits proficiency in handling the training data, 

there is scope for enhancement in its capacity for general-
isation when confronted with unseen test data.

4.3 Comparison and analysis of different mod-
els
To further validate this paper CNN-LSTM model’s ef-
fectiveness, this paper compared its classification per-
formance with that of Support Vector Machine (SVM) 
and Random Forest models on the same dataset. Table 2 
presents the classification accuracy, F1-score, and AUC 
values for the various models. Although the CNN-LSTM 
model exhibits marginal superiority over the traditional 
machine learning model on the test set, its classification 
performance nevertheless fails to meet expectations.

Table 2. Performance of SVM and Random Forest Model on the Test Set

Models Accuracy
SVM 22.09%
Random Forest 18.60%
CNN-LSTM 72.41%

The experimental analysis conducted in this section re-
vealed that the optimised CNN-LSTM model exhibited 
superior training set performance when confronted with 
the EEG signal classification task. However, it became 
evident that the model’s generalisation ability on the test 
set still necessitates enhancement. Further work will be 
conducted to optimise the structure and training strategy 
of the model with a view to enhancing its performance in 
practical applications. It is anticipated that the optimisa-
tion of the model structure will result in enhanced perfor-
mance and stability in the future.

5. Discussion

5.1 Discussion of findings
This study has developed a classification model for 
electroencephalographic signals (EEG) based on a con-
volutional neural network with long short-term memory 
(CNN-LSTM) architecture, which has been optimized for 
this purpose. The experimental results demonstrate that 
the model achieves 100% accuracy on the training set, 
thereby exhibiting excellent performance on known data. 
Nevertheless, the model exhibits a relatively low level of 
accuracy on the test set, suggesting that it may have limit-
ed generalisation capabilities when confronted with previ-
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ously unseen data. Further analysis revealed that the mod-
el may be prone to severe overfitting on the training set. 
Despite demonstrating proficiency in learning the patterns 
within the training data, the model exhibited suboptimal 
performance on new data samples.
Furthermore, the statistical analysis of the features indi-
cates significant differences in the time-domain features 
between different subjects, which provide valuable infor-
mation for the classification of EEG signals. However, 
the existing models do not fully utilise these differentiated 
features in the generalisation process, resulting in their 
suboptimal performance on the test set.

5.2 Research limitations
Despite the advancements in EEG signal classification, 
this paper study has several limitations.
1. A notable limitation is the small dataset size. The limit-
ed and unevenly distributed data may have contributed to 
the model’s poor performance on unseen data. The smaller 
dataset is inadequate for fully representing the distribution 
characteristics of the various types of EEG signals, which 
consequently affects the model’s generalisation ability.
2. The higher model complexity CNN-LSTM models 
have a more intricate structure and a lower dimensionality 
of the input data, which may impede the models’ capacity 
to effectively utilise all the feature information. Complex 
models are susceptible to overfitting during the training 
phase, which subsequently results in suboptimal perfor-
mance on the test set.
3. Feature Selection and Processing: Despite the applica-
tion of data reduction and normalisation techniques, the 
current feature extraction methods may not fully capture 
the essential information present in the EEG signal. It is 
therefore evident that further research into the improve-
ment of feature selection and processing methods rep-
resents an important avenue for enhancing classification 
performance.

5.3 Recommendations for improvement
In order to address the aforementioned limitations, a se-
ries of improvements have been proposed with the aim 
of further enhancing the classification performance of the 
model.
1. To improve the model’s generalization ability, future 
studies should focus on expanding the dataset. This could 
involve collecting more EEG samples and employing data 
augmentation techniques. The incorporation of additional 
samples and a more diverse subject population will serve 
to mitigate the risk of model overfitting.
2. Optimizing the model structure could be beneficial. 
This might involve simplifying the CNN-LSTM model or 

adopting a more suitable alternative for the current data-
set. Potential alternatives could include a lightweight deep 
learning model or a model based on integrated learning. 
Furthermore, regularisation techniques, such as dropout, 
or early stopping strategies may be employed to prevent 
overfitting of the model during training.
3. Improved feature engineering With regard to feature 
selection, the introduction of more sophisticated feature 
extraction techniques, such as frequency domain features 
or wavelet transform features, may prove beneficial in 
capturing more useful information from the EEG signal. 
Concurrently, feature selection algorithms, such as LAS-
SO regression or the mutual information method, can be 
employed to automatically identify the most discrimina-
tive features, thereby enhancing the classification perfor-
mance of the model.
4. The issue of category imbalance must be addressed. To 
address the issue of category imbalance, techniques such 
as oversampling, undersampling, or Generative Adver-
sarial Networks (GANs) can be employed to equalise the 
distribution of the diverse categories within the training 
set, thereby enhancing the model’s capacity to recognise 
samples belonging to a limited number of categories.
It is anticipated that the aforementioned enhancements 
will yield more pronounced outcomes in the domain of 
EEG signal processing and classification, thereby offering 
more pragmatic solutions for real-world applications.

6. Conclusion

6.1 Summary of research
This study proposes and implements a hybrid CNN-
LSTM model for EEG signal classification, exploring the 
potential of deep learning in this field. After preprocessing 
and feature extraction of the original EEG signals, this 
paper used principal component analysis (PCA) to reduce 
data dimensionality. The reduced features were then clas-
sified using a convolutional neural network (CNN) with 
long short-term memory (LSTM) units. The experimental 
results demonstrate that the proposed model exhibits an 
exceptionally high level of classification accuracy on the 
training set, thereby validating the effectiveness of the 
method in a specific data environment. However, the rel-
atively poor performance on the test set indicates that the 
model has limitations in terms of generalisation ability, 
which provides a key direction for improvement in future 
research.
During the course of the study, statistical analyses of the 
time-domain features of different subjects revealed signif-
icant differences in EEG features across subjects. These 
differences provide a basis for further optimisation of the 
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classification algorithm; however, the existing model still 
appears to be insufficient in dealing with complex and di-
verse features, especially in coping with unseen data, and 
thus shows obvious limitations.

6.2 Practical applications
After preprocessing and feature extraction of the original 
EEG signals, this paper used principal component analy-
sis (PCA) to reduce data dimensionality. The capacity to 
accurately classify EEG signals can markedly enhance the 
decoding accuracy of BCI systems, thereby facilitating 
more natural and intuitive human-computer interaction. 
Concurrently, in the domain of neurological rehabilitation, 
the monitoring and analysis of real-time EEG signals can 
facilitate the optimisation of rehabilitation plans and en-
hance the efficacy of patient rehabilitation. Furthermore, 
the implementation of precise EEG classification tech-
niques can facilitate the expedient identification of anom-
alous EEG patterns, thereby enhancing the precision and 
timeliness of diagnosis.
However, to apply these results in practice, this paper 
need to improve the model’s generalization ability for 
large-scale and diverse data. Furthermore, it is essential 
to strike a balance between real-time data processing and 
computational efficiency to guarantee the responsiveness 
and user experience of the system in practical applica-
tions.

6.3 Outlook for future work
Future research should concentrate on the following ar-
eas: firstly, in order to address the issue of the model’s 
generalisation ability, it is necessary to expand the size of 
the dataset and investigate more efficient model architec-
tures and regularisation strategies in order to enhance the 
model’s performance for practical applications. Secondly, 
efforts could be made to incorporate multimodal data (for 
example, a joint analysis of EEG and magnetoencephalog-
raphy) into the model, with the aim of enhancing the fea-
ture information and further improving the classification 
accuracy.
As computing technology advances, future research 
should focus on real-time EEG signal analysis methods 

using cloud and edge computing. The combination of 
cloud computing and edge computing, which offers re-
al-time processing capabilities, can facilitate the develop-
ment of an efficient and low-latency EEG signal analysis 
system. This system would be better suited to meeting 
user needs in practical application scenarios.
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