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Abstract:
Electroencephalography (EEG) is a critical tool in 
neuroscience and clinical diagnostics, offering valuable 
insights into brain activity. However, EEG signals are often 
contaminated by ocular artifacts, which can significantly 
distort the data, leading to potential misinterpretations. 
This study introduces a novel method for removing ocular 
artifacts from EEG signals using a combination of Discrete 
Wavelet Transform (DWT) and Savitzky-Golay (SG) 
filter. The proposed method effectively separates the EEG 
signal into multiple subbands using DWT, followed by the 
application of the SG filter to the contaminated subbands 
to remove artifacts while preserving the integrity of the 
original EEG signal. The performance of the proposed 
method is evaluated using a publicly available EEG 
dataset. Two performance metrics (signal-to-noise ratio 
improvement, and percentage reduction of correlation 
coefficient) are used to test the DWT-SG method. The 
results show superior artifact removal capabilities and 
lower computational complexity compared to traditional 
methods. The results demonstrate that the DWT-SG 
approach has an average SNRI and η values of 10.367 dB 
and 25.26%.

Keywords: Ocular artifacts, Electroencephalography, 
Discrete wavelet transform, Savitzky-Golay filter.

1. Introduction
Electroencephalography (EEG) is essential in neuro-
science and clinical diagnostics for monitoring and 
analyzing brain activity, as it helps us understand 
brain disorders and neurological conditions [1]. How-
ever, due to the use of electrodes located on the scalp 
for EEG signal acquisition, the electrical signals gen-

erated in the brain are partially blocked by the skull, 
resulting in relatively low amplitude and frequency 
of EEG signals. In clinical medicine, EEG can help 
doctors evaluate the development of diseases such as 
epilepsy. In the intensive care unit, EEG monitoring 
can provide doctors with information on the state 
of the patient’s brain, helping them adjust treatment 
plans in a timely manner based on the patient’s con-
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dition. In the above scenarios, if the collected EEG sig-
nals are not properly processed, the invalid information 
contained therein is likely to cause misdiagnosis of the 
patient. The noise or artifacts present in EEG signals push 
us to search for efficient and effective methods to remove 
them.
This study will focus on methods for removing artifacts. 
The artifacts in EEG signals can generally be classified 
into physiological and non-physiological sources based 
on their sources. For research on physiological artifact 
removal, because artifacts caused by large-scale body 
movements can generally render the collected EEG sig-
nals unusable, it is usually focused on dealing with arti-
facts from eye movements, neck muscle movements, and 
heart movements. Non-physiological artifacts, particularly 
interference from power lines, can cause a peak in the 
EEG signal spectrum at 50Hz or 60Hz, depending on the 
country and region where the signal was collected. EEG 
signals often get mixed up with these artifacts, making it 
hard to extract meaningful features. These unwanted ar-
tifacts can hide true neural signals, affecting the accuracy 
and reliability of EEG analysis. For example, the electro-
myographic signals generated by neck muscle movements 
can produce high-frequency components in EEG signals. 
Meanwhile, blinking and other eye movements mainly 
affect the electrodes in the frontal lobe. These movements 
cause voltage changes much bigger than brain waves. 
Therefore, careful filtering is required to keep the EEG 
data accurate [2]. Therefore, removing these artifacts is a 
crucial step in EEG preprocessing to ensure high-quality 
and interpretable data. This field in EEG signal processing 
has been extensively studied and various methods have 
been developed to handle different types of artifacts.
To better understand the context of this paper proposed 
method, it’s worth examining the evolution of ocular ar-
tifact processing techniques. In the early development of 
this field, researchers tended to use traditional processing 
methods, such as regression analysis [3]. This method is 
more complex in data collection, as it requires electrodes 
to be placed around the eyes to capture electrical signals 
from the eyes (EOG) while collecting EEG signals. How-
ever, this method has obvious drawbacks. Without a refer-
ence EOG signal, artifact removal becomes challenging. 
Additionally, the EOG signal may contain some brain ac-
tivity. Consequently, removing artifacts inevitably leads to 
the loss of some EEG signals [4]. Therefore, subsequent 
research has shifted towards using multi-scale analysis 
techniques such as discrete wavelet transform (DWT) and 
multivariate variational mode decomposition (MVMD), as 
well as blind source separation (BSS) such as independent 
component analysis (ICA) and principal component anal-
ysis (PCA) [5-7]. In recent years, researchers have started 

using hybrid methods such as DWT-ICA and MVMD-
PCA to address the challenges posed by ocular artifacts [5]
[8]. However, these methods, which combine BSS, gener-
ally have high computational resource requirements and 
are difficult to achieve real-time signal processing.
The Savitzky-Golay (SG) filter is a smoothing method 
that fits adjacent data points to a low-order polynomial 
within a moving window, using the least squares method 
[9]. Some recent researches have looked into using the SG 
filter for ocular artifacts removal, showing that it can re-
duce noise while keeping the signal intact [10]. Although 
SG filters require less computation compared to BSS, they 
need constant adjustment of window size and filter order 
to achieve better filtering performance. This process can 
be time-consuming for researchers. DWT can decom-
pose the original signal into a series of wavelets, and by 
applying SG filtering to specific wavelets, it can achieve 
good results in removing ocular artifacts. The challenge 
is not just removing these artifacts but doing so without 
distorting the original EEG signals. This paper proposes 
a novel ocular artifact removal technique that combines 
the multi-resolution analysis capabilities of DWT with 
the signal preservation properties of SG filters, aiming to 
achieve effective artifact removal while maintaining the 
integrity of the underlying EEG signals.
This paper is structured as follows: Section 1 introduces 
the topic and reviews relevant literature. Section 2 out-
lines the principles and experimental setup, detailing the 
theory and design methodology behind the SG filter im-
plementation. The experimental results and analysis of the 
designed filters are demonstrated in Section 3. Limitations 
and future directions are discussed in Section 4, and the 
work is concluded in Section 5.

2. Materials and Methods

2.1 EEG Datasets
This study used a publicly available dataset, which can be 
obtained from the following link: https://osf.io/2qgrd/ [11]. 
This dataset contains EEG recordings from 50 healthy 
participants, using 64 electrodes to record EEG signals. 
The electrode placement follows the international 10-10 
system, with the reference electrode located at the right 
mastoid and the grounding electrode being AFz. This data-
set also includes horizontal and vertical EOG collected by 
six electrodes: two placed at the outer canthi of each eye 
for horizontal EOG, and two above and below one eye for 
vertical EOG. The EEG and EOG data were resampled at 
200 Hz. Power line interference was removed using notch 
filters with cutoff frequencies of 49 and 51 Hz. Addition-
ally, a 0.4 Hz high pass filter was applied [12].
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2.2 Decomposition using Discrete Wavelet 
Transform
This study use DWT to decompose the EEG signal 

y = [ y n( )]n

N

=1
 with a sampling rate of 200 Hz into multiple 

frequency subbands. Based on the sampling frequency 
characteristics of the selected dataset, this study chose to 
decompose it into 5 levels and selected db4 as the mother 
wavelet. In this operation, the original signal is subjected 
to multi-level decomposition, which is equivalent to pass-
ing the EEG signal through multiple low-pass filters and 
high pass filters, ultimately producing a series of approxi-
mation coefficients A mJ ( )  and detail coefficients D mj ( ) . 
The former represents the low-frequency part of the sig-
nal, while the latter represents the high-frequency part. 
For the signal y, the approximation band wavelet coeffi-

cients vector AJ = [A mJ ( )]m

N

=

A

1
is given as,

	 A m y n n mJ ( ) = −∑
n

N

=1
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 
2 2
−

J
2ϕ ( −J ) � (1)

and jth detailed subband wavelet coefficients vector Dj 

=   D mj ( )
m

N

=

D

1
 can be evaluated as,

	 D m y n n mj ( ) = −∑
n

N

=1
( )  

 
 
2 2
−

2
j

ψ ( − j ) � (2)

where N is the length of the EEG signal and j = 1, 2, …, 5 
[4]. The ϕ  and ψ  represent the scaling function and the 
wavelet function respectively. The approximate subband 

signal and jth detailed subband signal constructed using AJ 
and Dj are given by

	 y n A m n mA J( ) = −
m
∑
=−∞

∞
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 
 
2 (2 )
−

J
2ϕ −J � (3)

	 y n D m n mD jj
( ) = −

m
∑
=−∞
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−

2
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ψ − j � (4)

For y nA ( )  and y nDj
( ) , the size of m  depends on the 

length of the approximation band wavelet coefficients 
vector and jth detailed subband wavelet coefficients vec-
tor, which means m N= …1,2, , A  and m N= …1,2, , D , re-
spectively.
This study calculated the power spectral density (PSD) 
of EEG signals contaminated by ocular artifacts and ref-
erence signals. The results show that the contaminated 
parts are mainly in the low-frequency range of the EEG 
signals. Specifically, these artifacts primarily affect the 
reconstructed approximate subband signals and the first 
few detailed subband signals. This will result in higher 
frequency amplitude values of the contaminated signals in 
the low-frequency range, as shown in Fig. 1(a) and (b). In 
addition, Fig. 1(c)–(h) shows the PSD plots of the approx-
imate sub-band signals and the first to fifth detailed sub-
band signals, with a total frequency range of 0-100 Hz. 
In Fig. 1(c) and (d), the waveform of the contaminated 
EEG signal clearly does not overlap with the reference 
signal, indicating that ocular artifacts mainly occur in the 
approximate sub-band and the first detailed subband, with 
a frequency range from 0 to 6.25 Hz.
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Fig. 1 (a) Ocular artifact contaminated EEG signal (blue) and reference signal (orange). (b) 
Power spectral density (PSD) of artifact contaminated EEG signal and reference signal. (c) 

PSD plots for the approximation subband signal.  (d) PSD plots for the first detailed subband 
signals. (e) PSD plots for the second detailed subband signals. (f) PSD plots for the third 

detailed subband signals. (g) PSD plots for the fourth detailed subband signals. (h) PSD plots 
for the fifth detailed subband signals (Photo/Picture credit: Original).

2.3 SG filer
The SG filter can filter out noise while maintaining the 
main characteristics of the signal. Given this property, 
This study decided to apply SG filters to the subbands 
contaminated by eye artifacts in this study. Specifically, 

This study focused on the approximate subband signal and 
the first detailed subband signal. For a set of data points 
with a length of N, assuming a window size of N k= +2 1
, the fitted p -order polynomial is
	 y a a x a x a x= + + +…+0 1 2

2
p

p � (5)
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where a0 ,… ap  are polynomial coefficients fitted at each 
data point. By minimizing the squared error between the 
data points and the fitting polynomial, the optimal polyno-
mial coefficients can be obtained. For the SG filter, mini-
mize its cost function within a window of length N

	 C a i xp z i= −
i k z
∑ ∑
=− =

k  
 
 

p

0

z
2

� (6)

where az  is the zth polynomial coefficients [13]. After the 
EEG signal is processed by the SG filter, its output is

	 y z h xOUT i z i
SG ( ) =

i k
∑
=−

k

− � (7)

Here, the hi  is the impulse response of the SG filter. From 
the above, it can also be seen that the filtering process of 
SG filter also convolves the signal.

2.4 Performance metrics
This study will use two performance metrics to evalu-
ate the proposed method for removing ocular artifacts. 
The first item is the improvement of signal-to-noise ratio 
(SNRI), which can be calculated by the following formu-
la:

	 SNRI SNR SNR= −OUT IN � (8)

and SNRIN  represents the SNR of the EEG signal at the 

port of input, and SNROUT  represents the SNR of the out-
put signal after artifact removal [14]. The mathematical 
expressions of the two are as follows

	SNR log SNR logIN OUT= × = ×10 , 10
   
   
      

   

y y
y y

IN OUT

R R2 2
2 2

2 2
2 2

� (9)
Here, yR  is the reference signal, yIN  is the artifact con-

taminated EEG signal, and yOUT  is the filtered signal [4]. 
The second performance metric is the percentage reduc-
tion in the correlation coefficient (η ), and it can be evalu-
ated by

	 η = ×
 
 
 

1
1
−
−
ρ
ρ

OUT

IN

100 � (10)

where ρ ρIN R IN= ( , )y y  and ρ ρOUT R OUT= ( , )y y  are the 
correlation coefficients of contaminated EEG signal eval-
uated before and after processing [14].

3. Results and discussion

Table 1. Values of SNRI and η  for channel data using the proposed approach

Channel Data SNRI (dB) η  (%)

P1_Channel 1 15.033 9.290
P1_Channel 4 8.925 8.860
P1_Channel 5 7.806 4.008
P1_Channel 6 7.968 8.435
P1_Channel 34 11.857 7.949
P1_Channel 35 11.374 10.803
P1_Channel 37 8.839 6.171
P2_Channel 1 12.357 39.732
P2_Channel 34 10.215 55.802
P2_Channel 35 10.788 53.612
P2_Channel 37 8.877 73.194
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Fig. 2 PSD plots of artifact contaminated EEG signal (blue) and filtered signal (orange) (Photo/
Picture credit: Original).

By calculating the SNRI and η  of the data before and af-
ter filtering, the results shown in Table 1 can be obtained. 
In terms of channel selection, this study chose multiple 
electrodes located in the frontal lobes that were contami-
nated by ocular artifacts. The results in Table 1 show that 
the hybrid method consisting of DWT and SG filter 
(DWT-SG) has a good effect on removing ocular artifacts. 
Compared to other traditional filtering methods such as 
median filtering and Gaussian filtering, the method pro-
posed in this paper has higher SNRI and lower η . This 
performance indicates that the SG filter can effectively re-
move artifacts while preserving the fundamental charac-
teristics of the EEG signal, likely due to its polynomial 
fitting approach which adapts well to local signal varia-
tions. Fig. 2 demonstrates that the DWT-SG method effec-
tively removes artifacts from the low-frequency part of 
contaminated EEG signals. Notably, the Power Spectral 
Density (PSD) of the filtered signal in the low-frequency 
range shows a 40 dB average reduction in artifact-related 
power compared to the original signal. In addition, the 
DWT-SG method demonstrates lower computational com-
plexity compared to hybrid methods using blind source 
separation. For instance, this paper method requires only 
6% of the computational resources needed by ICA-based 
methods, making it significantly advantageous for deploy-
ment on mobile platforms with limited processing power. 
At the same time, this method also has good prospects in 
application scenarios that require lower latency.

4. Conclusion
This article proposes a novel hybrid method, DWT-SG, 
for removing ocular artifacts from EEG signals. This pa-
per approach first decomposes the original EEG signal 
into approximate and detailed subband signals through 
multi-resolution analysis. Subsequently, this study apply 
SG filters to the contaminated subband signals. This com-
bination of techniques allows for effective ocular artifact 
removal while preserving the essential characteristics of 
the EEG data. This study used a publicly available data-
set when evaluating this method. The results show that 
compared to traditional methods, this method has better 
performance in removing ocular artifacts and lower com-
putational complexity.
Due to the advantage of computational complexity, this 
hybrid method has lower latency when processing con-
tinuous EEG data. Therefore, this study hope to use the 
DWT-SG method in EEG data processing on mobile 
platforms with lower computing power, or in clinical data 
monitoring scenarios that require low latency in the future. 
Afterwards, this study will continue to improve the DWT-
SG method in order to achieve better results in removing 
ocular artifacts. For SG filters, better filtering performance 
can be achieved by finding more suitable parameter sets 
or adding modules that automatically tune parameters for 
different signals. Secondly, the current DWT-SG method 
cannot automatically select contaminated sub-band sig-
nals, and further optimization can be carried out in this 
regard.
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