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Abstract:
The law of large number (LLN) and central limit theorem 
(CLT) have been important in probability, statistics, 
finance, and other fields for several centuries. They are 
also core theorems in probability. Through the work of 
Laplace, Chebyshev, Markov, Lyapunov, Bernoulli, and 
other famous mathematicians, the proof and forms of LLN 
and CLT have been greatly improved and expanded. They 
enable people to extract useful information from a large 
amount of data for statistical inference and prediction. 
Nevertheless, more scholars nowadays propose slightly 
improved proof for them, which may inspire people to 
use them better and understand their core ideas inside 
their elegant form. This study unravels certain proofs 
and applications of these two theorems to try to inspire 
scholars some further study of these theorems. This article 
uses a combination of proof of LLN and CLT and their 
application in different fields. Using different lemmas, 
such as Markov’s inequality and Chebyshev’s inequality, 
it discusses the process of different proofs of LLN and 
CLT. Based on many scholars’ research, it summarizes the 
application of LLN and CLT in many different fields. This 
article can provide learners a fundamental idea of LLN and 
CTL. These can help readers quickly catch the important 
points of LLN and CLT, which can help many different 
investigations in different fields, including Math, Physics, 
Economics, and various fields with data analysis. 

Keywords: Chebyshev’s inequality; Markov’s inequali-
ty; Law of large number; Central limit theorem.

1. Introduction
The history of law of large number (LLN) and cen-
tral limit theorem (CLT) begins with the use of e−x2

 
by Jacob Bernoulli as an approximation tool. It con-
tinues with the theory of errors of observation, math-

ematical astronomy problems, the emergence of the 
hypothesis of elementary errors, and Laplace’s foun-
dational work. The development of an abstract CLT 
goes through the work of Chebyshev, Markov, and 
Lyapunov [1]. This causes the important and pro-
found period during the development of the CLT in 
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1713-1901 [1]. With the development of these two theo-
rems, their application also continues to become wider. 
The LLN can be used for sampling estimation of mean 
value when the sample space is very large, as they provide 
the value of mean for a sample based on definition. It can 
also be used to solve problems of some companies to 
crack financing problems. Even in geometry or under 
mixing conditions, CLT can be used to solve problems if 
the fundamental preconditions of CTL are satisfied. How-
ever, there are many different situations where people 
cannot ensure they can be used or not. The current work 
scholars should do with them is to find their wider appli-
cation and build other theorems and deductions based on 
them, which can raise their importance and further help in 
other fields.
This article, by providing detailed proofs and application 
of LLN and CTL, helps scholars catch the core idea of 
CTL and LLN and further research in many other different 
fields. This paper first provides a fundamental introduction 
to LLN and CTL and their several methods of proofs, in-
cluding using the Borel-Cantelli lemma and Poisson limit 
theorem. Based on these, the paper states several appli-
cations of CTL and LLN in diverse fields, including their 
use in economics, math, business, and so on, especially in 
data analysis. This paper provides an important basis for 
understanding the origin of CTL and LLN, their role in 
probability theorems, and their important application in 
different fields, which can help readers look at them in a 
whole picture.

2. Lemmas and Theorems.

2.1 Lemmas
Before proving CTL and LLN, the author will give several 
lemmas.
Lemma 1. The Markov inequality states that

 P x a( ≥ ≤) EX
a

 (1)

Proof. Let X be any positive continuous random variable 
( RV ) ,  o n e  c a n  w r i t e  t h a t  t h e  e x p e c t a t i o n 

EX xf x dx= ∫∞−∞ ( ) = ∫0
∞ xf x( )

dx≥ ≥ = = ≥∫ ∫ ∫∞ ∞ ∞
a a axf x dx af x dx a f x dx aP x a( ) ( ) ( ) ( ) . 

So, P x a( )≥ ≤
EX
a

.

Lemma 2. The Chebyshev’s inequality states that

 P Y a( − ≥ ≤µ ) σ
a2

2

 (2)

For continuous RV, assume E Y( ) = µ  and Var Y( ) =σ 2 . 

Based on Markov inequalities, P x a( )≥ ≤
EX
a

. Let X= 

( )Y EY− 2 , so P( ( Y EY a− ≥)2 2 )≤ E Y EY( )−
a2

2

. Notice 

that P(( Y a− ≥µ)2 2 )=P( Y − ≥µ α), so P( Y − ≥µ α)≤σ
a2

2

. This is called Chebyshev’s inequalities.
Lemma 3 (Borel-Cantelli lemma). Assume {An}  is a set 

of sequence of events, if P (An ) < ∞,  then Near-certain 

event An  only happens a limited number of times.

Proof. Define event B= lim sup An n→∞ , it is found that

 B A=


n k n

∞ ∞

= =1
k  (3)

Consider event Bn =


k n

∞

=

Ak , then B Bn n⊃ +1 , and B


n

∞

=1

Bn . 

Based on monotonicity of probability, it is found that 
P B( n )≥ ≥ ≥P B( n+1 )  P (Bn )  and P B P B( n ) → ( ) .

Since Bn  is the union of Ak , one has

 P B P A( n k n k)≤∑∞
= ( ).  (4)

If ∑
n

∞

=1
P A( )k  converges, then ∑

k n

∞

=

P A( k ) approaches 0, so 

P B( n ) → 0 , and thus P(B)=0. This implies that event An  
will almost surely occur only finitely many times, so 

P( lim sup An n→∞ ) =0.

Lemma 4 (Poisson limit theorem). Assume X Bn  (n, pn ), 

and n→∞ , pn → 0 , then X n  tends to approach Poisson 
distribution.
P r o o f .  B a s e d  o n  d e f i n i t i o n ,  i t  i s  f o u n d  t h a t 
E X np[ n n] = = λ  and Var x np p( n n n) = − ≈(1 ) λ .  Thus, 

P x k ptnk p p( ) 0n n n= = −( \genfrac ) k n k(1 ) − . Using Stirling 

approximation, people can get P x k( )n = ≈
λ k k

k
e
!

−

.

2.2 Proof of Law of Large numbers
The first is about the weak LLN. It states that

 lim P x a
n→∞

( ) 0.n − ≥ =µ  (5)

On the one hand, one can prove it by using Chebyshev’s 
inequalities. Assume x x x1, 2, n  are independent identical-

ly distributed (iid) RV, and assume Var x( i ) =σ 2 . Based 
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o n  C h e b y s h e v ’ s  i n e q u a l i t i e s  ( l e m m a  2 ) , 

P x a( )n − ≥ ≤µ
Var

a
(
2

µ) . Because variables are i.i.d, 

Var Var( ( )µ = = =
∑ ∑
i i= =

n n

1 1

n n n

x Var xi i

2

( ) σ 2

.  S o ,  P x( n − µ

≥a) ≤
na
σ 2

2 . Notice lim
n→∞ na

σ 2

2 =0, So lim P x a
n→∞

( n − ≥µ )=0.

On the other hand, it can also be proved by using 

Borel-Cantelli lemma. Assume An = {x an − ≥µ } , based 

on  Chebyshev ’s  i nequa l i t i e s ,  i t  i s  f ound  tha t 

P A( n )≤
Var X

a
(

2
n ) . So, it is obvious that ∑

n

∞

=1
P A( )n  con-

verges, thus An  only happens in limit times, as X n  near 
surely converges at µ .
The second is about the strong LLN. The author notes it 
can be verified by Glivenko-Cantelli theorem [2]. In ad-
dition, fourth order moments of random variables are an-
alyzed and the strong number theorem is proved by proof 
by contradiction.
Assume random variables Xi  has fourth order mo-

ments E x  ( )i − µ
4  exist and are limited. The fourth mo-

ment of the sample mean is calculated and its asymptotic 
behavior is analyzed. Based on Markov inequalities, 

P X( n - µ≥a )≤
E x  ( )n

a
−
4

µ 4

. Combined with the analy-

sis results of fourth moment, it can be confirmed that X n  
surely converges at µ .

2.3 Proof of Central Limit Theorem
The author starts by using characteristic function. Assume 
X1 , X 2 , X 3 , X X4, n  are i.i.d RV, the mean value is µ , 

varience is defined as σ 2 . In addition, define Normalized 

sum  n =
n
1
σ 2 ∑

i=

n

1
(Xi - µ ) and define characteristic func-

tion of random variables as ϕZn (t)=E
 
 
 
 
e

it X
n

1

σ 2∑
i=

n

1
( )i−µ

. Be-

cause Xi  are i.i.d, then ϕZn (t) =
 
 
  
E e(

it X

n
1

σ

−µ
2

n

. Based on 

Taylor expansion,  

ϕZn ( t it o) 1= + − +
 
 
 
 

E X[
n

1

σ

−
2

µ] t E X2  
 (

2n nσ
1 −

2

µ)2
1

n

. 

Based on definition, E X[ 1 − =µ] 0  and E  
 (X1 − =µ)2 . 

σ 2 So, ϕZ t on ( ) = − +
 
 
 
1

2
t 2

n n
1

n

. It is thus analyzed that 

the characteristic function behaves asymptotically ϕZn

(t) ≈ exp(- t
2

2

). This is exactly the characteristic function 

of the standard normal distribution N (0,1) .
In addition, by using Poisson limit theorem, one can as-
sume x1 , x2 , x x3 n  are i.i.d discrete RV and define nor-

malized sum  n = S nn

n
−

σ 2

µ . Based on Poisson limit theo-

rem, when n →∞,   n  tends to approach normal 

distribution. Assume X B pi  1,( ) , then S B n pn  ,( ) . Based 
o n  P o i s s o n  l i m i t  t h e o r e m ,  o n e  f i n d s  t h a t 

lim P x x
n→∞

( )
np p
S npn

(1 )
−
−

≤ = Φ( ) . Here,Φ(x)  is normal dis-

tribution function.

3. Application

3.1 Law of Large number
People can utilize the law of large number for sampling 
estimation. In statistics, the large number theorem is wide-
ly applied to the problem of estimating the mean value of 
population from the sample mean. As long as the sample 
size is sufficient, the sample mean can be used to reliably 
predict the population mean regardless of the population 
distribution.
Also, it can be used in insurance and finance. The Theo-
rem of large numbers is the theoretical basis for insurance 
companies and financial institutions to calculate risk and 
price. With reams of historical data, these institutions can 
make reasonable estimates of future risks. Some scholars 
have given a certain way to use the LLN to control credit 
risk, solve the lack of credit for small and micro enterpris-
es, help financial lending companies control credit risks, 
and achieve crack financing problem goal [3]. Based on 
the law of large number, some scholars also prove that in 
the case of many economic agents, the individual risk will 
gradually disappear in the population, and the average 
outcome will converge to the expected value. This result 
suggests that large economies are inherently stable due to 
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the averaging of individual uncertainties [4].
Additionally, LLN can be used in analyzing the neural 
network parameters. The empirical distribution of the 
neural network parameters converges to the solution of a 
nonlinear partial differential equation, according to some 
researchers’ analysis of one-layer neural networks in the 
asymptotic regime of concurrently large network sizes 
and large numbers of stochastic gradient descent training 
iterations, which could be seen as LLN [5].
Also, LLN has application under wider conditions, includ-
ing when the RV are dependent on and have different dis-
tribution. That is, the sample mean can converge almost 
deterministically to the expected value even though RV 
are dependent on and have different distribution, if certain 
requirements depending on the structure and distribution 
conditions are satisfied. Some scholars used Markov’s 
inequality, Martingale theory, and other tools to get this 
result, which is an important extension of traditional LLN 
[6]. In this case, LLN can be used in more complex and 
wider conditions in different fields. 

3.2 Central Limit Theorem
The CLT can be used for confidence interval estimation. 
The central limit theorem provides a theoretical basis for 
constructing confidence intervals. In practical applica-
tions, confidence intervals can be generated to estimate 
the population parameters by assuming that the sample 
mean distribution is nearly normal.
The CLT can also be used for SMC method and Bayesian 
inference. The CLT provides insight into the convergence 
properties of the estimators derived by the SMC method, 
describing how the pattern of distribution of the estima-
tors approaches a normal distribution as the number of 
particles increases [7]. In this paper, scholars derive a CLT 
specific to the SMC method and show that under certain 
conditions, particle-based estimators will asymptotically 
follow a normal distribution.[7] The application of CLT 
ensures that the posterior distribution of particle approx-
imations becomes more accurate as the number of parti-
cles increases. This result has important implications for 
Bayesian inference because it validates the effectiveness 
of using particle filters to approximate posterior distribu-
tions and provides a theoretical basis for evaluating the 
accuracy of estimators [7]. 
The central limit theorem is also applicable in time series 
analysis and econometrics. Some scholars have demon-
strated that for a sequence of stationary RV that satisfy 
certain strong mixing conditions, the normalized sum of 
the sequence converges to a normal distribution, which 
means the CLT can be used in a wider range including 
under conditions of strong mixing [8]. Under strict condi-

tions, the CLT can be used in geometry too. Some scien-
tists have extended the use of the CLT to geometric prob-
ability, explaining that in random geometric structures, 
despite complex dependencies, normal limit behavior can 
still be observed under appropriate conditions and meth-
ods [9]. 
Besides the original form of CLT, variations of the CLT 
(such as the functional CLT) are useful for analyzing the 
long-term behavior of random processes, such as the long-
term prediction of stock prices in financial models [10]. 
For random graphs and network structures, the CLT also 
provides a theoretical basis for distribution convergence 
properties of key quantities such as medium distribution 
and path length in large-scale networks, which is very im-
portant for understanding network behavior in the context 
of big data.

4. Conclusion
The LLN and CLT are fundamental in probability theory. 
They can be proved in various ways based on different 
lemmas, including Chebyshev’s inequality and so on. 
They have different applications in different fields. With 
the current study, it is known that they can be used in 
insurance, analyzing neural network parameters, under 
more complex and wider conditions and long-term behav-
ior of random processes. So based on the paper, the origin 
of LLN and CLT is evolutionary and meaningful, as they 
are very important parts of the evolution of probability 
theory. The proofs and application of LLN and CTL give 
readers a quick view of LLN and CLT, which can help the 
development of other theories and further investigation 
into their application in many fields. However, now the 
application and derived products from LLN and CLT are 
still limited. This paper also has some limits on describing 
some applications and some proofs of LLN and CLT in 
detail. Further investigation should focus on their further 
application in more fields that seem irrelevant. Overall, 
the total review of LLN and CLT on their proofs and ap-
plication is consequential. Further study on their applica-
tion and derived theories also has wide prospects. 
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