
ISSN 2959-6157

Dean&Francis

1086

Abstract:
The implementation of modern electronic systems relies
on mathematical operations to solve problems. Of the
three most basic arithmetic operation algorithms, the
implementation of division has received less attention
and has a higher level of difficulty. Delays in the division
algorithm will lead to a reduction in overall arithmetic
efficiency. Therefore, it is imperative to study and
summarise high-performance dividers. In this paper,
based on the existing research, five high-performance
divider algorithms, namely the Pencil-and-Paper Method,
Restoring Division, Non-Restoring Division, Newton-
Raphson Method and Pipelined Method, have been
summarised. Researchers have comparatively analysed the
principles of each division algorithm, discussed the range
of application of each algorithm and given an analysis of
their respective advantages and disadvantages. As result,
the simulation of the Restoring Division, Non-Restoring
Division and Pipelined Method have been implemented.
Based on the simulation results, the researchers concluded
that different division algorithms need to be used in
different application scenarios and discussed their specific
application scenarios and comparisons between the
algorithms.

Keywords: Non-Restoring division; restoring division;
Newton-Raphson method; divider; vivado

1. Introduction
Since John Mauchly and J. Presper Eckert invented
the world’s first general-purpose electronic calcu-
lator, the ENIAC, in 1946, computer technology
has advanced by leaps and bounds [1]. However,
computers still process and manipulate data through
mathematical operations, and almost all information
processing and computational tasks can be translated

into mathematical problems. Of the three most basic
arithmetic operation algorithms, the fact that the divi-
sion operation takes much longer than multiplication
and addition, as well as the fact that division is a rel-
atively less common operation, results in a challeng-
ing implementation of the divider algorithm [2][3][4].
However, according to S.F. Oberman and M.J. Flynn,
delays in the divider can lead to lags in the overall
computation time, and the implementation of new

Comparative Research of Mainstream
High-Performance Dividers

Yingjie Hua1,

xianshu Luo2

and Haokun Yang3,*

1School of Integrated Circuit
Engineering, University of
Electronic Science and Technology
of China, Chengdu, China
2School of Mechanical and Electrical
Engineering, Chengdu University of
Technology, Chengdu, China
3School of Electrical Engineering &
Electronics, University of Liverpool,
Liverpool, United Kingdom

*Corresponding author: sghyan20@
liverpool.ac.uk

1

Dean&Francis

1087

YIngJIE HUA, xIAnSHU LUO AnD HAOKUn YAng

high-performance divider algorithms can greatly improve
system performance [2]. Due to the growing development
of artificial intelligence and autonomous driving, the need
for arithmetic power has been greatly increased, making
the development of new high-performance dividers a ne-
cessity.
It is generally accepted that divisors can be classified into
five main categories, digit recurrence, functional iteration,
very high radix, table look-up, and variable latency [2].
The SRT algorithm is one of the more classical and com-
mon digit recurrence algorithms [3][5]. Due to the large
number of parameters involved in the design of the divid-
er, the implementation of the divider varies for different
requirements [2][6]. In this paper, researchers will analyse
and compare the recent algorithms for dividers in terms of
computational efficiency, energy consumption, and design
area. In Chapter 2, the three classical Digit Recurrence
Algorithms, Restoring Division, Non-Restoring Division,
and Pencil-and-Paper Method, are highlighted and their
respective advantages and disadvantages are analysed. In
Chapter 3, researchers have summarised and generalised
the high-performance divider algorithm designs such as
Newton-Raphson Iteration and Pipelined Method. This
study compares and analyses the performance differences
by simulating the existing mainstream divider designs.
While summarising the high-performance divider algo-
rithms, researchers also explored the future development
direction of the high-performance divider, including fur-
ther optimising the parallelism of the algorithms and their
application in heterogeneous platforms, etc., aiming to
provide an overview and reference for the research and
development of high-performance divider.

2. Analysis of Three Classical Digit Re-
currence Algorithms

2.1 Pencil-and-Paper Method
The Pencil-and-Paper Method is an algorithm based on
the process of manual written division, which gradually
corrects the error and approximates the result by estimat-
ing the value of the quotient bit by bit, thus it is a very
classical Digit Recurrence Method. The principle is to
start from the highest digit of the divisor, judge each bit

of the quotient approach it step by step, and update the
remainder by subtraction. If the remainder is greater than
the divisor, the quotient of that bit is one and the opera-
tion of subtracting the remainder from the divisor is per-
formed, and then the divisor is shifted to the right by one,
if the remainder is less than the divisor, the quotient of
that bit is zero, the remainder remains unchanged and the
divisor is shifted to the right by one. This is repeated to
get the desired quotient and remainder. The sign bit of the
quotient is handled separately, and the result is obtained
by the XOR operation. This algorithm is robust, but be-
cause it takes twice the word length to compute, it is usu-
ally more time-consuming, especially in high-precision
computations or hardware implementations, as it requires
corrections for each computation. However, this method
can be parallelised to improve its computational power
due to its simple structure. In a sense, this process, based
on manual written division, was a precursor to restoring
division.

2.2 Restoring Division
Restoring Division is also known as Standard Long Divi-
sion [3]. It is similar to the Pencil-and-Paper Method in
that it constantly subtracts the divisor and adjusts the dig-
its in the quotient and the restores according to the posi-
tive or negative result of the subtraction to find the final
quotient and the remainder step by step. In this algorithm,
both the dividend and the divisor are operated as comple-
ments. In a single digit, the dividend is subtracted from
the divisor and the result is determined to be positive or
negative, if the result is positive, the quotient is one in that
digit and the result is shifted to the left, if the result is neg-
ative, the quotient is zero in that digit and the remainder is
restored by adding the divisor again. By repeating the
above steps until the quotient has the same number of dig-
its as the dividend and the divisor, and the remainder is
obtained by multiplying the result with 2−x step-by-step,
where x is the number of left shifts and the quotient con-
sists of a combination of the quotient values of each digit,
as shown in the flowchart in Fig. 1. In this figure, f is the
recovery flag bit, n is the number of bits in dividend and
divisor. q is the quotient value, m is the remainder, i is the
counting variable and Cn is the sign bit.

2

Dean&Francis

1088

ISSN 2959-6157

Fig. 1 Restoring division algorithm flowchart
Restoring Division is different from the Pencil-and-Pa-
per Method in that it shifts the remainder left each time
instead of the divisor, so that the number of bits in the
division is the same as the divisor and the remainder, and
the efficiency of the calculation will be improved. Howev-
er, in the calculation process, if the sign bit is one, and at
this time the remainder is negative, there will be added to
the operation of the divisor to restore the remainder of the
operation. This step of the operation greatly reduces the
efficiency of the calculation, so there is the introduction of
the Non-Restoring Division to solve the problem.

2.3 non-Restoring Division
The Non-Restoring Division continually adds and sub-
tracts dividends through the relationship between the divi-

sor and the remainder, and determines the quotient based
on the result of the operation, while allowing the remain-
der to be temporarily negative during the process, but then
the remainder will be added in subsequent steps through
the addition operation [7]. But in subsequent steps, the
remainder will be naturally restored to a positive number
through an addition operation. A key difference between
the Non-Restoring Division and Restoring Division is that
at the time of arithmetic for each digit. This algorithm
does not use restoring remainder if the result of dividend
minus divisor is negative. Fig. 2 illustrates the flowchart
for this algorithm. where n is the number of bits in the
dividend and divisor, q is the quotient, m is the remainder,
i is the counting variable, and Cn is the sign bit, which
performs the operation of dividing A by B.

3

Dean&Francis

1089

YIngJIE HUA, xIAnSHU LUO AnD HAOKUn YAng

Fig. 2 Non-Restoring division algorithm flowchart
Unlike Restoring Division, Non-Restoring Division does
not need to recover the negative remainder, but directly
performs the left shift and complement operations, using
direct addition and subtraction instead of simple subtrac-
tion, which greatly improves the arithmetic efficiency,
and the steps are fixed in all cases, so this division al-
gorithm is widely applicable. However, Non-Restoring
Division must perform a subtraction operation followed
by a positive or negative judgment on the remainder to
output the quotient value. So, a redundant clock delay is
added to the algorithm. In principle, the dividend of n-bit
width requires n clocks for the shift operation to produce
the result, while the Non-Restoring Division requires
n+1 clocks to complete the operation. For a large num-
ber of bits of the operation, it will take a lot of time, so
to address this shortcoming can be used in a number of
pre-processing methods. For example, before the shift op-
eration can be compared with the divisor to determine the
value of the quotient so that the result is one clock ahead
of the non-recoverable remainder method [8]. In addition,
some nonlinear algorithms can be used to greatly improve
the efficiency of the operation.

3. High-Performance Division Algo-
rithms and Optimizations

3.1 newton-Raphson Method
Based on the three Digit Recurrence Algorithms in the
Chapter 2, they all perform linear operations by adding
and subtracting. The efficiency of these Digit Recurrence
Algorithms does not seem to be very high if some division
operations with a very high number of digits are carried
out. Thus, the Newton-Raphson Method can be used to
optimise and improve the performance of the division al-
gorithm.
In principle, the Newton-Raphson Method, as seen in
Equation (1), rewrites the divisor into its inverse form,
changes the division to multiplying by the inverse of the
divisor, and then iterates the formula to converge to the
true quotient and consequently improves the computation-
al efficiency.

 Y A= =
D D
A 1 (1)

Equation (2) represents the calculation of the inverse

4

Dean&Francis

1090

ISSN 2959-6157

value, which can be calculated by the iterative method of
calculating the root sign of an equation. Thus, the New-
ton-Raphson Method has the form in Equation (3)

 F X D() = −
X
1 (2)

 X X X X X Di i i i i+1 = − = − = −
F' X
F X(
(

i

i

)
)

X
1

X

i

1

−

i
2

D
(2) (3)

The basic idea of the Newton-Raphson Method is to ap-
proximate a function using the first few terms of the Tay-
lor series of the function at a point, and to approximate
the roots of the original equation by solving for the roots
of this approximated function. Specifically, if r is a root
of the equation f(x) = 0, choose x0 as the initial approx-
imation of r, and then make a tangent to the function y =
f(x) at the point (x0, f(x0)), and the transverse coordinates
of the intersection of this tangent and the x-axis are the
first approximation of r. Repeating this process results in
a sequence of approximations of r. Each iteration brings
the approximation closer to the true root. After many iter-
ations, the equation will converge to 1/D, and important
for the efficient operation of the algorithm is the choice
of the initial value X0, which determines the characteris-
tics of the convergence. The value of D is scaled so that
it is in the range 0.5 < D < 1, in which case the algorithm
converges as fast as possible: to scale the value of D to a
given range, it is sufficient to use a shift operation, both
left and right [9]. So, on the basis of this method, it is pos-
sible to design a more efficient division algorithm, which
has the advantage of high convergence and allows the
handling of large numbers of digits; the disadvantages are
also obvious: first of all, since it is the final result of the
convergence, the accuracy will be affected by the number
of iterations. Secondly, if you need to calculate the 64-
bit division, in addition to the initialisation time, it takes
at least 65 clock cycles to complete the calculation, and
if an addition operation takes more than one clock cycle,
the calculation time will be doubled, which is not suitable
for real-time scenarios with high requirements [10]. At the
same time the performance can be further improved by
combining it with the pipelining idea, which will be able
to process the data continuously.

3.2 Pipelined Method
Pipelined Method controls the execution of stages in a
pipeline by using a state machine. In contrast to meth-
ods that compute each part of the function separately,
the researchers implemented the pipelined process by
re-splicing the 1bit data corresponding to the bits of the
single-step computation of the remainder and the original

dividend as a new single-step dividend input to the next
level of the single-step division computation unit.
For single-step division calculations, the single-step div-
idend bit width needs to be 1bit more than the original
divisor bit width in order not to overflow. For pipelining
purposes, registers are required at the output to store the
original divisor and dividend information. The result of
the single-step operation is the new 1-bit quotient data
and remainder, and the new 1-bit quotient data needs to
be shifted and summed with the quotient result of the
previous cycle in order to get the final division result. The
remainder of the single-step calculation and the 1bit data
of the corresponding bits of the original dividend are re-
spliced and input to the next level of single-step division
calculation unit as the new single-step divided number.
The information of dividend, divisor and quotient is also
passed to the next level.

4. Simulation Results
In order to verify the rationality and operational feasibil-
ity of the above algorithms, this paper used the software
Vivado 2019.2 to write corresponding programs for the
Restoring Division, Non-Restoring Division and Pipe-
lined Method. Based on each of the principles, researchers
wrote the corresponding testbench to derive the simulation
images.
The Restoring Division counterpart defines a total of eight
ports, namely clk, rst, start, divide, divisor, quotient, re-
mainder, finish_s, where clk is the clock signal, the low
effective rst is responsible for controlling the reset, and
the start signal controls whether the divider the start signal
controls whether or not the divider performs an operation.
Dividend, divisor, quotient and remainder represent the
dividend, divisor, quotient and remainder of the division
operation. Finally finish_s is used to judge whether the
divider completes the operation or not, if it does, then fin-
ish_s is set to 1, and the result of quotient and remainder
is updated, and the end signal, quotient and remainder are
cleared in the next clock cycle. To simulate Fig 3 as an ex-
ample, the results shown in the figure for one of the three
groups of data in the test, three groups of data dividend
and divisor corresponds to 9 and 4, 15 and 3, 14 and 4,
respectively, the resulting quotient and remainder corre-
sponds to quotient and remainder, the results of the 2 and
1, 5 and 0, 3 and 2. The results are correct, proving that
the Restoring The result is correct, which proves that the
principle of Restoring Division is reasonable and feasible
in practice. However, it is worth noting that Restoring Di-
vision from the data input to the results of the beginning
of the operation to the output delay is large, in order to
input 15 divided by 3, for example, from the input data

5

Dean&Francis

1091

YIngJIE HUA, xIAnSHU LUO AnD HAOKUn YAng

and start to the finish signal reversal through a total of
about 11 clock cycles. Therefore, although the structure of
Restoring Division divider is simpler than that of Non-Re-
storing Division divider, the overall delay of the system is

larger due to the fact that Restoring Division divider needs
to recover the remainder at each step of the arithmetic
process, and there are more iterative steps.

Fig. 3 Simulation results of the restoring division
The interface definition of Non-Restoring Division is
exactly the same as that of Restoring Remainder. Unlike
the Restoring Division test procedure, in order to make
the test results more intuitive, the test procedure adds a
corresponding delay processing for the inputs, so that
the output results correspond to the outputs one by one,
and therefore the output results will not be updated in the
next round of arithmetic operations as in the Restoring
Division, but rather will be output in sync with the results
of the current round of arithmetic operations. Take the
simulation Fig 4 as an example, in the figure dividend and
divider’s inputs are 12 and 5, 9 and 4, 10 and 3 respec-
tively, the output quotient and remainder are 2 and 2, 2
and 1, 3 and 1. The result is correct, which proves that the
principle of the method of unrecoverable remainder is rea-
sonable and feasible for practical operation.

It is worth noting that in the test Non-Restoring Division
divider, the system clock and the test Restoring Division
consistent, in the operation of the Non-Restoring Division
divider, its operation speed is faster, from start flip to 1 to
finish In the Non-Restoring Division divider operation, its
operation speed is faster, from start flip-flop to 1 to finish
after only 5 clock cycles, the latency is about half of the
Restoring Division, and this gap will be further magnified
in the order of magnitude of time in the division operation
of higher bit widths. The low latency at the same time
Non-Restoring Division divider requires more logic units
and complex control mechanisms, compared to Restoring
Division divider hardware resource consumption is higher,
in the actual design of digital circuits also need to make
more trade-offs.

Fig. 4 Simulation results of the non-Restoring division
From the simulation Fig 5, it can be seen that divide_ref
and divisor_ref are the delay of input divide and divisor,

corresponding to the output result merchant and remain-
der, i.e. quotient and remainder. Take the input 0x19 and 5,

6

Dean&Francis

1092

ISSN 2959-6157

0x10 and 3, 0x0a and 4 as an example, the corresponding
output results merchant and remainder are 5 and 0, 5 and
1, 2 and 2, respectively, and it can be seen that the results

are correct and the Pipelined Method algorithm is reason-
able.

Fig. 5 Simulation results of the pipelined method
It should be noted that dividend_ref and divisor_ref are
the input into dividend and divisor after delaying the
number of cycles with the same bit width as dividend, and
then the output results of merchant and remainder can be
pipelined without delay, which is in line with the principle
of pipelining algorithm. This is a major advantage of the
pipelined method over other division algorithms. Parallel
processing of different phases of the division operation
makes the throughput of the pipelined method divider
compared to a single-step divider, which is suitable for
applications that require high speed and large amounts of
data processing, such as image processing and scientific
computing.

5. Conclusion
In this paper, researchers have reviewed and analysed var-
ious implementation methods for high-performance divid-
er, including Restoring Division, Non-Restoring Division,
Pencil-and-Paper Method, Newton-Raphson Method and
Pipelined Method. The principles, code implementations
and simulations of these algorithms are investigated, and
it is found that different algorithms have their own advan-
tages in terms of hardware complexity, computational effi-
ciency and applicable scenarios. Pencil-and-Paper Method
is simple but not efficient enough, but the performance
can be improved by parallelising the operation. Restoring
Division and Non-Restoring Division are suitable for sim-
ple hardware structures, but the performance of the former
is limited by the restoring remainder process and the over-

all delay is larger, while the latter improves the efficiency
by eliminating the restoring step but consumes higher
hardware resources. The Newton-Raphson Method is very
effective in dealing with division operations with a very
large number of bits, but the precision of the result is af-
fected by the number of iterations. The Pipelined Method
uses a state machine to step-by-step control the execution
of each stage of the pipeline, which can output a pipe-
lined output without delay, and has a greater throughput,
suitable for high-speed computing and image processing
and other scenarios. Overall, different divider designs
strike different balances between performance, hardware
resources, and system constraints, and should be selected
based on specific needs to achieve optimal performance.
Authors Contribution
All the authors contributed equally and their names were
listed in alphabetical order.

References
[1] R. Eigenmann and G. Cybenko, As Eniac turns 50:
perspectives on computer science support for science and
engineering, in IEEE Computational Science and Engineering,
1996, 3(2): 16-17.
[2] S. F. Obermann and M. J. Flynn, Division algorithms and
implementations, in IEEE Transactions on Computers, 1997, 46,
(8): 833-854.
[3] Vishwas B R, Kiran V. Implementation and comparison of
different non-restoring division algorithm. International Journal
of Research and Review. 2022; 9(11): 70-73.

7

Dean&Francis

1093

YIngJIE HUA, xIAnSHU LUO AnD HAOKUn YAng

[4] U. S. Patankar, M. E. Flores and A. Koel, Division algorithms
- From Past to Present Chance to Improve Area Time and
Complexity for Digital Applications, 2020 IEEE Latin America
Electron Devices Conference (LAEDC), San Jose, Costa Rica,
2020: 1-4.
[5] N. Neelima, A. S. Kumar, A. Jayanth, K. K. Mahitha and
A. D. K. Reddy, Implementation of Efficient Restoring and
Long Division Algorithm, 2023 14th International Conference
on Computing Communication and Networking Technologies
(ICCCNT), Delhi, India, 2023: 1-6.
[6] K. Kataria and S. Patel, Design Of High Performance Digital
Divider, 2020 IEEE Vlsi Device Circuit And System (VLSI
DCS), Kolkata, India, 2020: 1-6.
[7] K. Jun and E. E. Swartzlander, “Improved non-restoring
division algorithm with dual path calculation,” 2013 IEEE 56th
International Midwest Symposium on Circuits and Systems

(MWSCAS), Columbus, OH, USA, 2013: 1379-1382.
[8] Yang Licheng, Zhang Donghong, Zhan Siwei, et al.
“Improvement of Non-Restoring Remainder Method—FPGA
Implementation of Pre-Comparison Method Divider” Industrial
Control Computer, 2015, 28(07): 79-80+84.
[9] O. I. Bureneva and O. U. Kaidanovich, FPGA-based
Hardware Implementation of Fixed-point Division using
Newton-Raphson Method, 2023 IV International Conference
on Neural Networks and Neurotechnologies (NeuroNT), Saint
Petersburg, Russian Federation, 2023: 45-47.
[10] D. N. Rao, G. Sai Charan, D. V. Venkata Sairam and K. S.,
“Posit Number Division using Newton-Raphson method,” 2021
International Conference on Advances in Electrical, Computing,
Communication and Sustainable Technologies (ICAECT),
Bhilai, India, 2021: 1-6.

8

