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Abstract:
The implementation of modern electronic systems relies 
on mathematical operations to solve problems. Of the 
three most basic arithmetic operation algorithms, the 
implementation of division has received less attention 
and has a higher level of difficulty. Delays in the division 
algorithm will lead to a reduction in overall arithmetic 
efficiency. Therefore, it is imperative to study and 
summarise high-performance dividers. In this paper, 
based on the existing research, five high-performance 
divider algorithms, namely the Pencil-and-Paper Method, 
Restoring Division, Non-Restoring Division, Newton-
Raphson Method and Pipelined Method, have been 
summarised. Researchers have comparatively analysed the 
principles of each division algorithm, discussed the range 
of application of each algorithm and given an analysis of 
their respective advantages and disadvantages. As result, 
the simulation of the Restoring Division, Non-Restoring 
Division and Pipelined Method have been implemented. 
Based on the simulation results, the researchers concluded 
that different division algorithms need to be used in 
different application scenarios and discussed their specific 
application scenarios and comparisons between the 
algorithms.

Keywords: Non-Restoring division; restoring division; 
Newton-Raphson method; divider; vivado

1. Introduction
Since John Mauchly and J. Presper Eckert invented 
the world’s first general-purpose electronic calcu-
lator, the ENIAC, in 1946, computer technology 
has advanced by leaps and bounds [1]. However, 
computers still process and manipulate data through 
mathematical operations, and almost all information 
processing and computational tasks can be translated 

into mathematical problems. Of the three most basic 
arithmetic operation algorithms, the fact that the divi-
sion operation takes much longer than multiplication 
and addition, as well as the fact that division is a rel-
atively less common operation, results in a challeng-
ing implementation of the divider algorithm [2][3][4]. 
However, according to S.F. Oberman and M.J. Flynn, 
delays in the divider can lead to lags in the overall 
computation time, and the implementation of new 
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high-performance divider algorithms can greatly improve 
system performance [2]. Due to the growing development 
of artificial intelligence and autonomous driving, the need 
for arithmetic power has been greatly increased, making 
the development of new high-performance dividers a ne-
cessity.
It is generally accepted that divisors can be classified into 
five main categories, digit recurrence, functional iteration, 
very high radix, table look-up, and variable latency [2]. 
The SRT algorithm is one of the more classical and com-
mon digit recurrence algorithms [3][5]. Due to the large 
number of parameters involved in the design of the divid-
er, the implementation of the divider varies for different 
requirements [2][6]. In this paper, researchers will analyse 
and compare the recent algorithms for dividers in terms of 
computational efficiency, energy consumption, and design 
area. In Chapter 2, the three classical Digit Recurrence 
Algorithms, Restoring Division, Non-Restoring Division, 
and Pencil-and-Paper Method, are highlighted and their 
respective advantages and disadvantages are analysed. In 
Chapter 3, researchers have summarised and generalised 
the high-performance divider algorithm designs such as 
Newton-Raphson Iteration and Pipelined Method. This 
study compares and analyses the performance differences 
by simulating the existing mainstream divider designs. 
While summarising the high-performance divider algo-
rithms, researchers also explored the future development 
direction of the high-performance divider, including fur-
ther optimising the parallelism of the algorithms and their 
application in heterogeneous platforms, etc., aiming to 
provide an overview and reference for the research and 
development of high-performance divider.

2. Analysis of Three Classical Digit Re-
currence Algorithms

2.1 Pencil-and-Paper Method
The Pencil-and-Paper Method is an algorithm based on 
the process of manual written division, which gradually 
corrects the error and approximates the result by estimat-
ing the value of the quotient bit by bit, thus it is a very 
classical Digit Recurrence Method. The principle is to 
start from the highest digit of the divisor, judge each bit 

of the quotient approach it step by step, and update the 
remainder by subtraction. If the remainder is greater than 
the divisor, the quotient of that bit is one and the opera-
tion of subtracting the remainder from the divisor is per-
formed, and then the divisor is shifted to the right by one, 
if the remainder is less than the divisor, the quotient of 
that bit is zero, the remainder remains unchanged and the 
divisor is shifted to the right by one. This is repeated to 
get the desired quotient and remainder. The sign bit of the 
quotient is handled separately, and the result is obtained 
by the XOR operation. This algorithm is robust, but be-
cause it takes twice the word length to compute, it is usu-
ally more time-consuming, especially in high-precision 
computations or hardware implementations, as it requires 
corrections for each computation. However, this method 
can be parallelised to improve its computational power 
due to its simple structure. In a sense, this process, based 
on manual written division, was a precursor to restoring 
division.

2.2 Restoring Division
Restoring Division is also known as Standard Long Divi-
sion [3]. It is similar to the Pencil-and-Paper Method in 
that it constantly subtracts the divisor and adjusts the dig-
its in the quotient and the restores according to the posi-
tive or negative result of the subtraction to find the final 
quotient and the remainder step by step. In this algorithm, 
both the dividend and the divisor are operated as comple-
ments. In a single digit, the dividend is subtracted from 
the divisor and the result is determined to be positive or 
negative, if the result is positive, the quotient is one in that 
digit and the result is shifted to the left, if the result is neg-
ative, the quotient is zero in that digit and the remainder is 
restored by adding the divisor again. By repeating the 
above steps until the quotient has the same number of dig-
its as the dividend and the divisor, and the remainder is 
obtained by multiplying the result with 2−x  step-by-step, 
where x  is the number of left shifts and the quotient con-
sists of a combination of the quotient values of each digit, 
as shown in the flowchart in Fig. 1. In this figure, f is the 
recovery flag bit, n is the number of bits in dividend and 
divisor. q is the quotient value, m is the remainder, i is the 
counting variable and Cn is the sign bit.
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Fig. 1 Restoring division algorithm flowchart
Restoring Division is different from the Pencil-and-Pa-
per Method in that it shifts the remainder left each time 
instead of the divisor, so that the number of bits in the 
division is the same as the divisor and the remainder, and 
the efficiency of the calculation will be improved. Howev-
er, in the calculation process, if the sign bit is one, and at 
this time the remainder is negative, there will be added to 
the operation of the divisor to restore the remainder of the 
operation. This step of the operation greatly reduces the 
efficiency of the calculation, so there is the introduction of 
the Non-Restoring Division to solve the problem.

2.3 non-Restoring Division
The Non-Restoring Division continually adds and sub-
tracts dividends through the relationship between the divi-

sor and the remainder, and determines the quotient based 
on the result of the operation, while allowing the remain-
der to be temporarily negative during the process, but then 
the remainder will be added in subsequent steps through 
the addition operation [7]. But in subsequent steps, the 
remainder will be naturally restored to a positive number 
through an addition operation. A key difference between 
the Non-Restoring Division and Restoring Division is that 
at the time of arithmetic for each digit. This algorithm 
does not use restoring remainder if the result of dividend 
minus divisor is negative. Fig. 2 illustrates the flowchart 
for this algorithm. where n is the number of bits in the 
dividend and divisor, q is the quotient, m is the remainder, 
i is the counting variable, and Cn is the sign bit, which 
performs the operation of dividing A by B.
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Fig. 2 Non-Restoring division algorithm flowchart
Unlike Restoring Division, Non-Restoring Division does 
not need to recover the negative remainder, but directly 
performs the left shift and complement operations, using 
direct addition and subtraction instead of simple subtrac-
tion, which greatly improves the arithmetic efficiency, 
and the steps are fixed in all cases, so this division al-
gorithm is widely applicable. However, Non-Restoring 
Division must perform a subtraction operation followed 
by a positive or negative judgment on the remainder to 
output the quotient value. So, a redundant clock delay is 
added to the algorithm. In principle, the dividend of n-bit 
width requires n clocks for the shift operation to produce 
the result, while the Non-Restoring Division requires 
n+1 clocks to complete the operation. For a large num-
ber of bits of the operation, it will take a lot of time, so 
to address this shortcoming can be used in a number of 
pre-processing methods. For example, before the shift op-
eration can be compared with the divisor to determine the 
value of the quotient so that the result is one clock ahead 
of the non-recoverable remainder method [8]. In addition, 
some nonlinear algorithms can be used to greatly improve 
the efficiency of the operation.

3. High-Performance Division Algo-
rithms and Optimizations

3.1 newton-Raphson Method
Based on the three Digit Recurrence Algorithms in the 
Chapter 2, they all perform linear operations by adding 
and subtracting. The efficiency of these Digit Recurrence 
Algorithms does not seem to be very high if some division 
operations with a very high number of digits are carried 
out. Thus, the Newton-Raphson Method can be used to 
optimise and improve the performance of the division al-
gorithm.
In principle, the Newton-Raphson Method, as seen in 
Equation (1), rewrites the divisor into its inverse form, 
changes the division to multiplying by the inverse of the 
divisor, and then iterates the formula to converge to the 
true quotient and consequently improves the computation-
al efficiency.

 Y A= =
D D
A 1  (1)

Equation (2) represents the calculation of the inverse 
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value, which can be calculated by the iterative method of 
calculating the root sign of an equation. Thus, the New-
ton-Raphson Method has the form in Equation (3)

 F X D( ) = −
X
1  (2)

 X X X X X Di i i i i+1 = − = − = −
F' X
F X(
(
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i
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The basic idea of the Newton-Raphson Method is to ap-
proximate a function using the first few terms of the Tay-
lor series of the function at a point, and to approximate 
the roots of the original equation by solving for the roots 
of this approximated function. Specifically, if r is a root 
of the equation f(x) = 0, choose x0 as the initial approx-
imation of r, and then make a tangent to the function y = 
f(x) at the point (x0, f(x0)), and the transverse coordinates 
of the intersection of this tangent and the x-axis are the 
first approximation of r. Repeating this process results in 
a sequence of approximations of r. Each iteration brings 
the approximation closer to the true root. After many iter-
ations, the equation will converge to 1/D, and important 
for the efficient operation of the algorithm is the choice 
of the initial value X0, which determines the characteris-
tics of the convergence. The value of D is scaled so that 
it is in the range 0.5 < D < 1, in which case the algorithm 
converges as fast as possible: to scale the value of D to a 
given range, it is sufficient to use a shift operation, both 
left and right [9]. So, on the basis of this method, it is pos-
sible to design a more efficient division algorithm, which 
has the advantage of high convergence and allows the 
handling of large numbers of digits; the disadvantages are 
also obvious: first of all, since it is the final result of the 
convergence, the accuracy will be affected by the number 
of iterations. Secondly, if you need to calculate the 64-
bit division, in addition to the initialisation time, it takes 
at least 65 clock cycles to complete the calculation, and 
if an addition operation takes more than one clock cycle, 
the calculation time will be doubled, which is not suitable 
for real-time scenarios with high requirements [10]. At the 
same time the performance can be further improved by 
combining it with the pipelining idea, which will be able 
to process the data continuously.

3.2 Pipelined Method
Pipelined Method controls the execution of stages in a 
pipeline by using a state machine. In contrast to meth-
ods that compute each part of the function separately, 
the researchers implemented the pipelined process by 
re-splicing the 1bit data corresponding to the bits of the 
single-step computation of the remainder and the original 

dividend as a new single-step dividend input to the next 
level of the single-step division computation unit.
For single-step division calculations, the single-step div-
idend bit width needs to be 1bit more than the original 
divisor bit width in order not to overflow. For pipelining 
purposes, registers are required at the output to store the 
original divisor and dividend information. The result of 
the single-step operation is the new 1-bit quotient data 
and remainder, and the new 1-bit quotient data needs to 
be shifted and summed with the quotient result of the 
previous cycle in order to get the final division result. The 
remainder of the single-step calculation and the 1bit data 
of the corresponding bits of the original dividend are re-
spliced and input to the next level of single-step division 
calculation unit as the new single-step divided number. 
The information of dividend, divisor and quotient is also 
passed to the next level.

4. Simulation Results
In order to verify the rationality and operational feasibil-
ity of the above algorithms, this paper used the software 
Vivado 2019.2 to write corresponding programs for the 
Restoring Division, Non-Restoring Division and Pipe-
lined Method. Based on each of the principles, researchers 
wrote the corresponding testbench to derive the simulation 
images.
The Restoring Division counterpart defines a total of eight 
ports, namely clk, rst, start, divide, divisor, quotient, re-
mainder, finish_s, where clk is the clock signal, the low 
effective rst is responsible for controlling the reset, and 
the start signal controls whether the divider the start signal 
controls whether or not the divider performs an operation. 
Dividend, divisor, quotient and remainder represent the 
dividend, divisor, quotient and remainder of the division 
operation. Finally finish_s is used to judge whether the 
divider completes the operation or not, if it does, then fin-
ish_s is set to 1, and the result of quotient and remainder 
is updated, and the end signal, quotient and remainder are 
cleared in the next clock cycle. To simulate Fig 3 as an ex-
ample, the results shown in the figure for one of the three 
groups of data in the test, three groups of data dividend 
and divisor corresponds to 9 and 4, 15 and 3, 14 and 4, 
respectively, the resulting quotient and remainder corre-
sponds to quotient and remainder, the results of the 2 and 
1, 5 and 0, 3 and 2. The results are correct, proving that 
the Restoring The result is correct, which proves that the 
principle of Restoring Division is reasonable and feasible 
in practice. However, it is worth noting that Restoring Di-
vision from the data input to the results of the beginning 
of the operation to the output delay is large, in order to 
input 15 divided by 3, for example, from the input data 
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and start to the finish signal reversal through a total of 
about 11 clock cycles. Therefore, although the structure of 
Restoring Division divider is simpler than that of Non-Re-
storing Division divider, the overall delay of the system is 

larger due to the fact that Restoring Division divider needs 
to recover the remainder at each step of the arithmetic 
process, and there are more iterative steps.

Fig. 3 Simulation results of the restoring division
The interface definition of Non-Restoring Division is 
exactly the same as that of Restoring Remainder. Unlike 
the Restoring Division test procedure, in order to make 
the test results more intuitive, the test procedure adds a 
corresponding delay processing for the inputs, so that 
the output results correspond to the outputs one by one, 
and therefore the output results will not be updated in the 
next round of arithmetic operations as in the Restoring 
Division, but rather will be output in sync with the results 
of the current round of arithmetic operations. Take the 
simulation Fig 4 as an example, in the figure dividend and 
divider’s inputs are 12 and 5, 9 and 4, 10 and 3 respec-
tively, the output quotient and remainder are 2 and 2, 2 
and 1, 3 and 1. The result is correct, which proves that the 
principle of the method of unrecoverable remainder is rea-
sonable and feasible for practical operation.

It is worth noting that in the test Non-Restoring Division 
divider, the system clock and the test Restoring Division 
consistent, in the operation of the Non-Restoring Division 
divider, its operation speed is faster, from start flip to 1 to 
finish In the Non-Restoring Division divider operation, its 
operation speed is faster, from start flip-flop to 1 to finish 
after only 5 clock cycles, the latency is about half of the 
Restoring Division, and this gap will be further magnified 
in the order of magnitude of time in the division operation 
of higher bit widths. The low latency at the same time 
Non-Restoring Division divider requires more logic units 
and complex control mechanisms, compared to Restoring 
Division divider hardware resource consumption is higher, 
in the actual design of digital circuits also need to make 
more trade-offs.

Fig. 4 Simulation results of the non-Restoring division
From the simulation Fig 5, it can be seen that divide_ref 
and divisor_ref are the delay of input divide and divisor, 

corresponding to the output result merchant and remain-
der, i.e. quotient and remainder. Take the input 0x19 and 5, 
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0x10 and 3, 0x0a and 4 as an example, the corresponding 
output results merchant and remainder are 5 and 0, 5 and 
1, 2 and 2, respectively, and it can be seen that the results 

are correct and the Pipelined Method algorithm is reason-
able.

Fig. 5 Simulation results of the pipelined method
It should be noted that dividend_ref and divisor_ref are 
the input into dividend and divisor after delaying the 
number of cycles with the same bit width as dividend, and 
then the output results of merchant and remainder can be 
pipelined without delay, which is in line with the principle 
of pipelining algorithm. This is a major advantage of the 
pipelined method over other division algorithms. Parallel 
processing of different phases of the division operation 
makes the throughput of the pipelined method divider 
compared to a single-step divider, which is suitable for 
applications that require high speed and large amounts of 
data processing, such as image processing and scientific 
computing.

5. Conclusion
In this paper, researchers have reviewed and analysed var-
ious implementation methods for high-performance divid-
er, including Restoring Division, Non-Restoring Division, 
Pencil-and-Paper Method, Newton-Raphson Method and 
Pipelined Method. The principles, code implementations 
and simulations of these algorithms are investigated, and 
it is found that different algorithms have their own advan-
tages in terms of hardware complexity, computational effi-
ciency and applicable scenarios. Pencil-and-Paper Method 
is simple but not efficient enough, but the performance 
can be improved by parallelising the operation. Restoring 
Division and Non-Restoring Division are suitable for sim-
ple hardware structures, but the performance of the former 
is limited by the restoring remainder process and the over-

all delay is larger, while the latter improves the efficiency 
by eliminating the restoring step but consumes higher 
hardware resources. The Newton-Raphson Method is very 
effective in dealing with division operations with a very 
large number of bits, but the precision of the result is af-
fected by the number of iterations. The Pipelined Method 
uses a state machine to step-by-step control the execution 
of each stage of the pipeline, which can output a pipe-
lined output without delay, and has a greater throughput, 
suitable for high-speed computing and image processing 
and other scenarios. Overall, different divider designs 
strike different balances between performance, hardware 
resources, and system constraints, and should be selected 
based on specific needs to achieve optimal performance.
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